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Executive Summary 

The Deliverable D4.2, entitled “Report on integrated mockup of the AIaaS system”, provides 

the first integrated mockup of the Artificial Intelligence as a Service (AIaaS) system, developed 

as part of the activities of TEACHING WP4. In particular, the deliverable includes the software 

demonstrator (AI-toolkit), which is made available through the TEACHING GitLab 

repository1, and the corresponding report, which is given in this document. 

 

The major goal of this document is to describe the AIaaS software toolkit, illustrating its 

updated architecture, the organization and API of the different software modules, as well as the 

integration mockup scripts and demos. Besides, to properly frame the content of this document 

within the scientific and methodological advancements carried out by WP4, we also give an 

update on the state-of-the-art and an overview of new preliminary results on relevant Artificial 

Intelligence methodologies. 

 

This report is structured as follows. In Section 1 we introduce the scopes of this document and 

the relations with the other deliverables delivered at M20. Then, in Section 2 we present an 

updated state-of-the-art analysis that focuses on advancements in the core AI-based 

methodologies of interest. In Section 3 we present the architecture of the AIaaS system, while 

in Sections 4 and 5, we go in depth into the description of its fundamental pieces of software, 

respectively the platform components and the learning modules. Then, in Section 6 we describe 

the AIaaS mockup integration, showing how to proceed for the setup and the execution of the 

integration scripts. In the same section, we showcase several mockup use cases and describe 

two demo applications, which intend to demonstrate the potentiality of the developed system. 

In Section 7 we illustrate preliminary results on several research lines in AI which will be 

relevant for the further developments of the AIaaS during the rest of Y2 and in Y3. Finally, 

Section 8 concludes the document. 

 

 
1 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit 

 

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit
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1 Introduction 

The fundamental goal of the work performed in WP4 is to develop a distributed AI as a Service 

(AIaaS) software toolkit that enables human-driven adaptive applications in Cyber-Physical 

Systems of Systems (CPSoS). 

 

The work is organized and performed in four tasks, whose description is briefly recalled below, 

including information from project replanning (in agreement with what reported in D7.2). 

Task T4.1 “AI as a Service” is responsible for the development of the core methodological 

components of the TEACHING AIaaS, as well as of the design, implementation and integration 

of the software toolkit. The task started at M1, and it was planned to last until M30. After project 

replanning, the activities within T4.1 have been extended to last until M36. 

Task T4.2 “AI for human monitoring” leverages the work in T4.1 to develop AI 

methodologies that are suitable for the recognition and characterization of the human state 

(physiological, emotional and cognitive) from streams of sensors’ gathered information.  

Task T4.3 “AI models for human-centric personalization” is responsible for the development 

of the self-adaptation and personalization functionalities of the AI modules in the AIaaS system, 

leveraging the human state information gathered from T4.2. 

For both T4.2 and T4.3, the activities started at M7. While the original plan was for a duration 

until M36, after replanning both the tasks have been extended until M42. Moreover, their scopes 

have been extended to cope with anomaly detection towards avionics applications.  

Task T4.4 “Privacy-aware AI models” focuses on the development of privacy-preserving 

methods to be bundled in the AIaaS system. The activities in this task were planned to start at 

M12 and end at M30. After replanning, for the task it is decided to have a duration from M15 

until M42. In addition to that, the scope of the task has been extended to deal also with the 

relevant aspects of Dependable and Safe AI. 

 

While the previous deliverable D4.1 was mostly dedicated to the preliminary design of the 

AIaaS system (Phase 1 of the project), this deliverable is intended to report the work performed 

during the first part of the core technology building activities (Phase 2 of the project). As such, 

the goals of this deliverable are the following: 

• Provide an in-depth description of the refined architectural design of the AIaaS system; 

• Illustrate the elementary software bricks of the AIaaS software toolkit, i.e., its platform 

components and its learning modules; 

• Describe the AI-toolkit software repository, providing detailed information on the 

mockup integration and demo execution. 

Moreover, with the idea of keeping the report on the scientific work carried out in WP4 up-to-

date, D4.2 also includes an update on the relevant state-of-the-art and an overview of recent 

preliminary results. 

 

The rest of this deliverable is structured as follows. In Section 2 we give an updated survey on 

the state-of-the-art in several AI-related methodologies of interest. Specifically, we give 

updates on the topics of Recurrent and Reservoir Computing (RC) Neural Networks, which 

have been previously identified (see Deliverable D4.1, Section 2) as fundamental AI building 

blocks for processing sequential forms of sensor-gathered data. This is complemented by 

advances in Federated, Continual and Reinforcement Learning methodologies, which are 

crucial to the development of the distributed AI learning services. The section also includes 

relevant information on privacy-preserving and anomaly detection AI algorithms. Moreover, in 

light of the great relevance played by the aspects of dependability and safety in relation to the 

introduction of AI methodologies within safety critical applications, we dedicate some space to 
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a summary of the literature in the field, sketching also the basic elements of a proposed 

methodology for safety compliance of Recurrent Neural Networks. 

The updated state-of-the-art is followed, in Section 3, by the description of the refined AIaaS 

architecture, where we give an overview of the system (refreshing the rationale and the high-

level requirements), as well as details on the formats adopted for data and metadata. In this 

section we also introduce the fundamental building blocks of the AIaaS architecture, namely 

the Platform Components and the Learning Modules, whose operation is reported in depth in 

Section 4 and Section 5, respectively. In Section 6, we report on the process of integration of 

the AIaaS mockup, introducing the software repository, the mockup setup and integration 

scripts, several use cases (covering the topics of sequence classification with Continual 

Learning, Dependability, Reinforcement and Federated Learning), as well as two demo 

applications for stress monitoring and autonomous driving personalization. After that, in 

Section 7 we intend to give the sense of the on-going scientific work in this WP, illustrating a 

number of preliminary results on fast learning in edge devices using TensorFlow-lite, 

adversarial robustness for sequence learning models, anomaly detection and Continual 

Learning (CL) with RC, as well as CL for Human State Monitoring. Finally, we draw our 

conclusions in Section 8. 

 

Before that, in Section 1.1 we shortly recall the relations with the other deliverables. 

1.1 Relationship with other deliverables 

In compliance with its intended purpose within the scopes of the TEACHING project, this 

document (D4.2) describes the integrated mockup of the TEACHING AIaaS system.   

 

D4.2 builds upon the previous WP4 deliverable D4.1, where we gave a preliminary version of 

the AIaaS design, which is now refined and complemented by a first description of the AIaaS 

mockup software components and of the mockup integration. At the same time, in D4.2 we 

provide an upgraded state-of-the-art analysis on relevant AI methodologies, and an overview 

of preliminary results on ongoing research. 

 

This document is delivered within a group of related project deliverables, namely D1.2, D2.2, 

D3.2, D4.2, and D5.2 (listed in Table 1), all of which serve as a mean of verification for 

milestone MS2, entitled First integrated setup with mock-up of the TEACHING platform.   

Table 1 Deliverable grouping for verification of TEACHING Milestone 2 

D1.2 TEACHING CPSoS architecture and specifications 

D2.2 Refined requirement specifications and preliminary release of the computing and 

communication platform 

D3.2 Interim Report on Engineering Methods and Architecture Patterns of Dependable 

CPSoS 

D4.2 Report on integrated mockup of the AIaaS system 

D5.2 Preliminary use case deployment, implementation and integration report with 

related dataset release 

 

The AIaaS system described in this document (D4.2) is framed within the context of the 

TEACHING CPSoS architectural concepts illustrated in D1.2, and relies on the High-

Performance Computing and Communication Infrastructure (HPC2I), whose updated 

description is given in D2.2. Aspects related to dependable and safe AI are informed by the 
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work described in D3.2. Finally, the related body of work on use case deployment, 

implementation and integration is reported in D5.2. 

The mapping of the viewpoints of the different WPs and related deliverables is depicted in 

Figure 1.  

 

Figure 1 Depiction of the IIRA Viewpoints from2 and mapping of TEACHING Deliverables focuses.  

 

 

 
2 https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/  

D5.2 

 

D3.2

 

D1.2 

 D2.2 

 

D4.2 

 

https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/
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2 Updated State-of-the-art Analysis 

This section aims at giving a refresher on the state-of-the-art methodologies that are of interest 

for the developments reported in this deliverable, touching a number of diverse topics. Notice 

that, to avoid cluttering and repetitions, whenever the fundamental literature on a topic has been 

already given in D4.1, here we focus on describing the advancements that resulted from the 

work within this work package.  

Section 2.1 describes the recent advancements on Recurrent and RC neural networks, while 

Sections 2.2 and 2.3 give updates, respectively, on the fields of Federated Learning and 

Continual Learning. Section 2.4 introduces the fundamental concepts of Reinforcement 

Learning which are of interest and constitutes the basics for the human-centric personalization 

in autonomous vehicles applications. Section 2.5 introduces the basics of privacy-preserving 

approaches in ML. Section 2.6 dives into the topic of Dependability and Safety in AI 

applications for autonomous vehicles, also sketching the fundamental concepts of a proposed 

methodology for Functional Safety compliance of RNNs. Finally, Section 2.7 discusses the 

relevant state-of-the-art in the field of Anomaly Detection. 

2.1 Recurrent and Reservoir Computing Neural Networks 

The class of Recurrent Neural Networks (RNNs) [1] gives a flexible paradigm for learning with 

sequential forms of data. The key concept is that the neural network architecture includes a 

recurrent hidden layer that develops a contextual representation of the driving (possibly multi-

dimensional) input signal. In this context, the Echo State Network (ESN) [2] [3] is the model 

of choice when computational efficiency of the training algorithms is of interest, as is the case 

of distributed learning on possibly low-powerful devices. ESNs are fundamentally based on the 

idea of exploiting the network activations from the point of view of a discrete-time dynamical 

system. For the sake of convenience, we recall that an ESN architecture comprises an input 

layer, a recurrent hidden layer (called the reservoir), and an output layer (called the readout). 

In practice, the parameters of the recurrent hidden layer (i.e., of the reservoir) can be left 

untrained after proper initialization based on asymptotic stability conditions. A resulting 

striking advantage in comparison to conventional RNNs models is given by the extreme speed 

of training, as the learning problem formulation is much simplified (and typically boils down 

to a simple linear regression/classification). The idea of studying the evolution of the recurrent 

network as a dynamical system is not unique to ESNs but it is shared under the hat of the so-

called Reservoir Computing (RC) paradigm [4]. 

 

RC in general and ESNs in particular offer a unique trade-off between complexity and accuracy, 

making them suitable for applications in learning tasks related to monitoring the human state 

conditions from sensor devices. For more information on RNNs, RC, and ESNs, the reader is 

referred to Section 2.1 of D4.1 (which also motivates in detail the adoption of the RC/ESN 

approach within the activities of WP4), or to the available literature surveys, e.g. [5] [6] [7]. 

 

To evaluate the performance of ESNs, and Deep ESNs [8], in comparison to the most common 

variants of RNNs over tasks of human state and activity recognition, we have performed a 

benchmark over a diverse set of networks and datasets, recently published in [9]. Our analysis 

comprised vanilla RNNs, Long Short-Term Memory networks (LSTMs) [9], Gated Recurrent 

Units (GRUs) [10], and their deep variations. The tasks considered in our analysis included a 

variety of cases in the area of Human State Monitoring (HSM), namely WESAD and 

ASCERTAIN, and Human Activity Recognition (HAR), namely HHAR, PAMAP2, and 

OPPORTUNITY. Full details on the datasets, as well as on the experimental conditions analysis 
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can be found in [9]. Here we limit ourselves to indicate that all the explored alternative learning 

models underwent an individual process of model selection in order to tune the respective 

relevant hyper-parameters, while keeping the number of trainable parameters comparable in all 

the cases. The major outcomes of our analysis are reported in Table 2, which shows the average 

accuracy (and std) achieved by the different models on the various tasks. 

 

Table 2 Average accuracy and standard deviation on the test set. The averages and standard deviations 

are computed by retraining the models 5 times, each with a different random initialization of the weights. 

Reported from [9]. 

 
 

 

The results clearly indicate that, despite their simplicity, ESNs are able to achieve a level of 

accuracy that is competitive with those models that require full adaptation of the parameters. 

Moreover, our results also point out that gated RNN architectures (especially GRUs) can be of 

particularly appealing in light of the high level of accuracy that can be achieved on HSM and 

HAR tasks. While in the current literature the GRU approach is fundamentally hampered by 

the high computational costs of the involved training algorithms, some of our recent research 

efforts have been devoted to find suitable hybrid RC-GRU methodologies that would be able 

to keep the advantages of both approaches. From a broader perspective, our analysis also points 

out that RNN in general can be a first choice for the class of tasks under consideration, in 

particular their deep and gated variants. 

 

While the elementary characterization of RC methods is to leave untrained the recurrent hidden 

connections to reduce the training costs, a fundamental downside is that the developed temporal 

representations are achieved by a dynamical system that, in its settings, is agnostic with respect 

to the learning task on which it is applied. Hence, a relevant line of research in the field consists 

in looking for smart and cheap local learning algorithms, that are able to adapt some parts of 

the reservoir dynamics based on the task information [4]. Related to this aspect is the great 

interest for a specific dynamical regime of the recurrent hidden layer of an RNN/ESN, known 

as the ‘edge of criticality, or ‘the edge of chaos’ (EoC) [11]. This essentially represents the 

transition between stability and instability, where the computational properties of the recurrent 

layer are maximized. While the most widely known algorithm for tuning the reservoir 

dynamics, i.e. Intrinsic Plasticity [12], only indirectly leads to dynamical improvements of the 

reservoir system, in a recent paper we have introduced a novel training algorithm for ESNs 

which directly targets the proximity to the edge of EoC as an objective for optimization. The 

algorithm is named Phase Transition Adaptation (PTA) [13], and, as reported in Table 3, has 

been empirically demonstrated to sensibly improve the performance of conventional ESNs (and 

relevant architectural variants, including Simple Cycle Reservoirs – SCR [14]) on a set 

numerical benchmarks. See [13] for full details on the algorithm and the experimental analysis. 
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Table 3 NMSE (the lower the better) on the test set of classical RC benchmark datasets achieved by ESN, 

SCR and PTA. Best results arehighlighted in boldfont. Reported from [13]. 

 
 

2.2 Federated Learning 

In a centralized setting, a Machine Learning algorithm can make use of all the available training 

data to produce a predictive model that best generalizes to unseen data. Unfortunately, a 

centralized setting is not always feasible. When the data comes from multiple independent 

devices, constraints such as network connectivity, bandwidth, and privacy preservation can 

make it impossible to aggregate the training data within a centralized location. 

 

In a typical Federated Learning scenario [15], the aforementioned problem is tackled by letting 

each client produce a local Machine Learning (ML) model trained on just the locally available 

data. Then, instead of the raw data, it is the models that are transferred to a centralized location 

such as a server. 

 

In the server, the models must be aggregated by strategy (e.g., averaging the weights) and then 

sent back to the clients if they need it for inference or further training. The critical point for an 

effective federation lies in the aggregation strategy, which ideally should produce a single 

compact model that incorporates all the knowledge from each client. However, due to the 

notorious difficulty in the interpretation of the weights of a neural network, it is not easy to give 

guarantees about the outcome of the aggregation. 

One of the simplest techniques from the literature to enable Federated Learning for virtually all 

kinds of neural networks, including RNNs and ESNs, is that of training the models locally on 

each independent device, and then using on the server an aggregation strategy that is commonly 

known as Federated Averaging [16], illustrated in Figure 2. 

 

 

Figure 2 Federated Averaging Scheme. Each client c sends the local matrix Wc to the server. After the 

aggregation of the models is performed in the form of a weighted average, the server sends back the same 

matrix W to all clients. Taken from [17], to which the reader is referred for all details. 
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In the Federated Averaging strategy, the weights of each locally trained model are aggregated 

in the central server by an element-wise average, possibly weighted by the size of the local 

datasets. In the special case of ESNs, we can assume the scenario of a uniform configuration of 

the reservoir among all clients. In practice this means that the input-to-reservoir matrices and 

the reservoir-to-reservoir matrices will be identical in all clients. In this case, since the 

connections pointing to the reservoir are all untrained, Federated Averaging simply amounts to 

the transmission and averaging of the readout weights alone. 

 

Averaging the readout weights is a straightforward technique that however does not give any 

strong guarantee about the performance of the aggregated model. We have proposed a novel 

federation method that can applied to ESN models, whose aggregation strategy guarantees 

optimal aggregated weights given the data and the reservoir. We refer to this strategy as 

“Incremental Federated Learning” [17], schematically depicted in Figure 3. 

 

 

Figure 3 Incremental Federated Learning scheme. Each client sends the local matrices Ac and Bc to the 

server. After the matrices are aggregated and multiplied by the optimal readout weights, the server 

transmits W back to all clients. Taken from [17], to which the reader is referred for all details.  

 

In Incremental Federated Learning, we exploit an algebraic decomposition of the typical 

readout training equation to produce two matrices that get transmitted to the server. These two 

are then recombined in the server, to produce readout weights that are mathematically 

equivalent to those that would have been computed if the data was locally available to the 

server. Full details are reported in the paper [17]. 

 

The advantages of the proposed approach are manifold. First, the long-proven characteristics 

of ESNs make it possible to train predictive models very efficiently, even directly on the edge. 

Second, the global model that is produced by aggregating the local models is optimal in the 

sense that no better equivalent model could have been produced by gathering all the training 

data within a centralized node. This point is illustrated by means of experimental analysis on 

two relevant datasets in the field of HSM and HAR, as shown respectively in Table 4 and Table 

5, from which it can be seen that the performance of Incremental Federated ESNs matches the 

one of the centralized models and evidently outperforms the one achievable by Federated 

Averaging. Third, privacy constraints are preserved since the potentially sensitive training data 

is never transmitted over the network and remains confined within each local node. 
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Table 4 Training and Test accuracy on WESAD, achieved by Centralized model, Federated Averaging 

(FedAvg) and Incremental Federated (IncFed) Learning. Taken from [17], to which the reader is referred 

for full details. 

 

Table 5 Training and Test accuracy on HAR, achieved by Centralized model, Federated Averaging 

(FedAvg) and Incremental Federated (IncFed) Learning. Taken from [17], to which the reader is referred 

for full details. 

 

2.3 Continual Learning 

 

Learning continuously from non-stationary environments and ever-changing data streams is a 

complex challenge. Machine Learning algorithms and models today often assume an i.i.d. 

distribution of the underlying training data which should be representative of the (fixed) task to 

be solved. Hence, adaptation capabilities in many cases are only “simulated” through an 

inefficient and expensive approach roughly based on three main steps: i) accumulate data; ii) 

re-train the prediction model from scratch on all the accumulated data; iii) re-deploy the 

prediction model. Continual Learning (CL), as a fast-growing field within the machine learning 

and deep learning community, aims at developing more efficient and scalable algorithms for 

incrementally acquiring new knowledge and skills and swiftly adapt to the ever-changing nature 

of the external world.  

 

As already discussed in D4.1, continual learning may not only improve the effectiveness and 

sustainability of current AI solutions but also their robustness to catastrophic failures and 

enabling more privacy-preserving approach where data never leave the device on which they 

are collected / produce (and can be even deleted after training). However, CL poses challenges 

that are still difficult to overcome especially for gradient-based optimization algorithms such 

as neural networks that have been shown to suffer from Catastrophic Forgetting (CF) and the 

inability to learn from non-i.i.d. data streams. 

 

In order to address these issues, several approaches have been devised and can conveniently be 

framed into a three-way fuzzy categorization: replay, regularization and architectural 

approaches [18]. However, these approaches are often very specific to the narrow scenario on 

which they are designed (e.g. class-incremental learning) and are difficult to port to even 

slightly settings. This impacts significantly on the ability to deploy these algorithms into the 

real world which are often tested on toy benchmarks and significantly constrained and artificial 

environments.  

 

More recently and also through the TEACHING efforts [19], the research community has 

started to: 
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1. Extend the scope of current continual learning algorithms to different or more general 

scenarios other than the more common Task-Incremental, Class-Incremental and 

Domain-Incremental ones; 

2. Apply current CL techniques to a broader range of applications such as Human State 

Monitoring (HSM); 

 

As for 1., state-of-the-art continual learning approaches have mostly been tested on tasks where 

data points are not temporally coherent and can be processed in isolation. However, this is rarely 

the case for realistic use-cases where the temporal correlation often implies a semantic in the 

data. Continual Sequence Learning and Classification is of uttermost importance for many 

applications including the ones supported by TEACHING.  

 

In [20], an initial study on how CL learning strategies work on different sequence learning tasks 

and datasets for sequence classification is reported. To the best of our knowledge this is one of 

the first attempts to provide a comprehensive empirical evaluation of continual learning with 

deep recurrent neural networks. This work opened the path to the analysis of continual learning 

with randomized neural networks for sequence modeling and in particular echo state networks 

(more on this in Section 7). 

 

A significantly important application for TEACHING is human state monitoring: being able to 

understand the state of the human in Cyber-Physical Systems of Systems is crucial to adapt 

system properties and behavior in order to reduce stress, boredom, errors and maximize 

performance. However, this is not an obvious task if the environment, humans in the loops, 

objectives change over time as the system has to be constantly re-trained with high frequency.  

 

Continual learning has been only recently investigated in this important area of application that 

can still be considered as a sequence learning and classification problem. In Section 7 more 

details about first experiments carried out on this topic are reported. 

   

2.4 Reinforcement Learning 

The task of autonomous driving can be approached with two different approaches [21]. The 

first assumes a modular pipeline that combines sensing and acting modules and machine 

learning modules in order to understand the vehicle environment and decide on the actions to 

be taken (e.g., on the driving profile to be selected). The actions are taken by the acting modules 

and control the vehicle behaviour based on predefined setups. The second assumes an end-to-

end learning setup in which a neural network takes as input data from sensors and decides on 

the commands to be sent to the actuators (i.e., brake, gas, steer). The benefit from the former 

approach is on the ability to separately evaluate and control the behaviour of each module, and 

also on the ability to add more sensors or modules in order to further improve the vehicle 

navigation. Developing each module separately makes the overall task much easier as each of 

the sub-tasks can independently be solved by popular approaches for each task.  In contrast, the 

latter approach demands a complete retraining of the ML model, when a new sensor is added 

or an actuator is replaced and any outlying behaviour can hardly be traced and reasoned. 

 

In order to train an end-to-end learning approach or a machine learning module in the modular 

pipeline, which decides the vehicle actions based on the sensors’ input, we can either employ 

imitation learning [22] [23] or reinforcement learning [24] techniques. In the case of imitation 

learning, the systems learn to operate the vehicle by monitoring how human drivers behave and 
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imitates their reactions [25]. The main advantage of this technique is the limited effort needed 

for training, since there is no need to define or describe the driving model, but simply to provide 

the model with training data. Its main restriction is the limited ability to generalise, since when 

the vehicle is trained in a specific environment (e.g., in a highway), we cannot be sure of its 

behaviour on a different environment (e.g., in a local road).  

 

Reinforcement learning requires a more detailed description of the task, and the system will be 

able to learn after a long number of trial-and-error repetitions. A limitation is that the system 

cannot be trained in real conditions (e.g., on an actual car) since it learns through its errors, 

which in a real setup could be catastrophic in the case of an error that leads to an accident. For 

this reason, RL is usually performed on simulated environments, before we can consider the 

RL model ready to be deployed. These features make RL more appropriate for the modular 

approach, in which the final decision of the RL model is fed to an acting module (e.g., a driving 

mode selector) and not directly on a vehicle actuator, e.g., on the gas or brake.  

 

Having all the above in mind, the driving personalisation module in TEACHING has been 

modelled using the modular pipeline approach. At the heart of this approach is the 

Reinforcement Learning module, which takes as input the streams of vehicle or driver sensors 

and decides on the driving mode that will be employed at each moment. Reinforcement learning 

has been used in the context of ADAS, in order to personalise the driving experience [26] and 

has been used in HCI, HRI, and CPSoS in general, for personalising the user experience [27] 

[28] [29]. 

 

The RL technique is based on the process by which an agent is trained by giving him the state 

of the environment he is called upon to solve and some reward policy. The agent tries different 

actions and after evaluating the action receives a reward. The same process is repeated until the 

agent solves the problem. An integral part of the RL solution is the definition of the RL task, as 

depicted in Figure 4. 

 

Figure 4 The basic idea and elements involved in a reinforcement learning model. 

 

RL algorithms are classified into two main categories depending on whether or not they are 

model-based (Model-Based, Model-Free). This distinction refers to whether an agent, during 

training or performing a move, uses environmental predictions for his move, such as the rules 

of a game. In the project we dealt with the Model-Free category, as the problem of 

personalization is a complex problem and it is almost impossible to model driving and its 

personalization.  

 

The next division of model-free approaches is in Policy Optimization and Q-Learning which 

are both based on the Markov Decision Process and their algorithms have several similarities 
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in their structure and performance. However, they differ radically in how they approach the 

choice of the next move by the agent. The goal of Q-Learning is to teach the agent to learn a 

deterministic solution that comes from a set of possible moves that will always choose the one 

with the highest reward (value based). In Policy Optimization, the solution can be stochastic 

and the agent aims to learn the best way in which a state of the environment is connected, with 

the next move (policy based). The Policy Gradient, A2C / A3C (Advantage Actor-Critic), PPO 

and TRPO algorithms are briefly classified in Policy Optimization and the DQN, C51, QR-

DQN and HER algorithms in Q-Learning. 

 

The Advantage Actor Critic algorithm is often found in two variants, A3C (Deepmind Async 

method) and A2C (OpenAI Sync method). A3C refers to its initial implementation by [30] and 

has to do with the parallel execution of multiple asynchronous instances of the agent, while 

A2C has to do with a later study by [31] which has shown that asynchronous execution does 

not significantly contribute to performance but can often reduce the efficiency of sample 

collection. 

 

2.5 Privacy-preserving Learning 

 

Machine learning models are often trained on sensitive data, such as health parameters, daily 

routes, or other identifying information.  It is of paramount importance to guarantee the user's 

privacy in these scenarios, and for this reason, it must be ensured that the model does not leak 

private information about the user's data. 

 

The most popular methods to enable privacy-aware training of machine learning models are 

based on the notion of differential privacy. The idea behind it is that a model is considered 

private if it is not possible to determine if a specific sample was present in its training set or 

not. The differential privacy guarantees depend on a privacy budget < 𝜖, 𝛿 >, which can be 

used to control how private the model should be. 

 

In TEACHING, privacy-aware training is a fundamental concern. For example, in the 

automotive setting, no data should leave the car, and the resulting model should guarantee the 

user’s privacy. 

 

The main machine learning models used in TEACHING are ESNs and RNNs. Therefore, 

privacy-aware training is based on the differentially private SGD [32], a privacy-aware training 

algorithm designed for deep learning models. Currently, the literature on privacy-aware training 

is focused on feedforward and convolutional models, while recurrent models are under-studied. 

Our work in TEACHING could provide practitioners with useful guidelines to improve 

privacy-aware training of recurrent networks. 

2.6 Dependable and Safe AI 

In the previous deliverable D4.1 we introduced a number of metrics to ensure the dependability 

of NNs in order to use them in safety critical applications. Considering that TEACHING project 

focuses on sequential data we need to study how to ensure dependability of RNNs to be used 

in safety critical applications, such as in the automotive field. Automotive applications require 

adherence to Functional Safety for road vehicles [33] because without safety assurance the 

system can cause physical injuries or damage to the health of persons. If RNNs used to perform 
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human state monitoring do a mistake in the prediction of the psychological state of the driver, 

the driving of the vehicle could be entrusted to the driver even if the latter is not able to drive 

the vehicle. This scenario can cause an accident with negative impacts on the safety of the 

driver, passengers, and people in close proximity to the vehicle.  

 

For this reason, the prediction of the psychological state of the driver is a safety-related task, 

which means that the system needs to be designed following Functional Safety guidelines. A 

feature of RNNs and, in general, of all the Neural Networks, is that the core of these software 

elements is not easily interpretable by humans and can be considered as a black box. Even with 

a completely deterministic model, the RNN’s computations are complex and difficult to 

understand under all the possible scenarios. As a consequence, the model may fail in 

unpredictable ways. Keeping this consideration in mind, we can say that the most popular 

Functional Safety standard for Road Vehicles, the ISO 26262 [33] cannot be applied to design 

and test Neural Networks because it refers to the development of traditional software, where 

the behaviour is simpler and explicitly defined by the programmer. A new standard that can 

overcomes this problem is the ISO 21448 (version prepared for DIS), also known as SOTIF 

[34], a standard born to address the challenges introduced by autonomous driving systems with 

automation levels from 1 to 5.  

 

SOTIF analyzes the possible behaviours of a function of the system (or the possible behaviours 

of a single element) that differ from the intended/desired behavior to verify if there are possible 

known scenarios that can be exploited to harm people. Furthermore, SOTIF tries to find out 

also possible unknown scenarios that can harm people. Once scenarios of potential risk for 

people’s health have been discovered, SOTIF provides guidelines to mitigate the risk to an 

acceptable level. When all the possible safety risks have been mitigated to an acceptable value, 

the function can be released. One key requirement posed by SOTIF on each algorithm, 

component, and, in general, to the entire system is robustness. Robustness is usually understood 

as the ability of a system to react to adverse events, such as noise injection to the system inputs. 

However, robustness is not sufficient to consider a RNN safety. We need of some indicators 

capable of measuring the “safeness” of the RNN. 

 

To address this challenge, we submitted a paper where we propose a methodology to reach 

Functional Safety compliance of RNNs [35]. First of all, we verify the robustness of RNNs with 

respect to inputs perturbations, such as those generated by systematic errors in the sensors data 

acquisition, environmental conditions, or adversarial perturbations [36]. To ensure the safety, 

RNNs must be robust to all these different noise sources. We propose a methodology that uses 

the robustness of the model, computed with state-of-the-art methods such as POPQORN [37], 

with respect to a range of accuracy values. By themselves, this robustness analysis of the RNN 

does not provide sufficient information about the safety of the RNN. For this reason, our 

methodology also provides a method to evaluate how often we are potentially unsafe through 

the use of Safety Performance Indicators (SPIs) [38] that count the number of unsafe 

occurrences. Depending on the specific needs of the application, a set of appropriate SPIs can 

be defined, along with the target values to be reached. Finally, a number of test scenarios must 

be performed and evaluated for each SPI. In the following we explain the phases to make a 

RNN compliant with Functional Safety. 

 

2.6.1 Determination of RNN Adversarial Robustness by Inputs Perturbation 

The first phase relies on the evaluation of robustness using POPQORN [37], where we measure 

how much noise can be injected into the input samples before the RNN’s accuracy decreases 
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below a predefined threshold. More formally, given an input sequence 𝑋0 we can add noise and 

move towards the input 𝑋0
′  that is at a distance Δ from 𝑋0 (Figure 5). Let us focus on a sequence 

classification task: for small values of Δ, the correct output of the network should be the same 

class of the original sequence, therefore hinting at a robustness of the RNN to small 

perturbations. 

 

 

Figure 5  Sample 𝑿𝟎 and perturbed sample 𝑿𝟎
′  at a distance Δ. 

Now, let us provide a sample 𝑋0 as input to a properly trained RNN and suppose that the RNN 

will provide as output a correct prediction 𝑌0. We can identify a region of space around the 

sample 𝑋0 such that all input samples 𝑋0
′ =  𝑋0 +  Δ, Δ < 𝑑 inside the region will be correctly 

classified as the class 𝑌0 (Figure 6), with a determined accuracy (e.g., accuracy greater than 

95%). 

 

Figure 6  Input space around 𝑿𝟎 providing a correct prediction with a determined accuracy. 

The goal of this first analysis is to determine three input spaces around 𝑋0 where all the samples 

inside each region are correctly classified with a probability above a specified minimum value 

(e.g. 0.95, 0.8, 0.5). As a result, we obtain a measure of the local robustness of the RNN around 

the original input 𝑋0, which are the three concentric hyperspheres corresponding to the different 

accuracy levels (Figure 7). 

 

To accomplish this goal, we define three different RNN output threshold values: 𝑎1, 𝑎2, 𝑎3 with 

the following relations: 𝑎3 <  𝑎2 <  𝑎1. After, we shall apply different perturbations to the 

input sample 𝑋0 to generate three different spaces as follows (Figure 7): 

 

• 𝑆1, space of the perturbed inputs with distance 𝑑 ≤  𝑑1 from 𝑋0; 

• 𝑆2, space of the perturbed inputs with distance 𝑑1 <  𝑑 ≤  𝑑2 from 𝑋0; 

• 𝑆3, space of the perturbed inputs with distance 𝑑2 <  𝑑 ≤  𝑑3 from 𝑋0. 



TEACHING D4.2                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 23 - September, 2021 

 

Figure 7  Input samples with distance 𝒅 ≤  𝒅𝟏, 𝒅𝟏 <  𝒅 ≤  𝒅𝟐 and 𝒅𝟐 <  𝒅 ≤  𝒅𝟑 from 𝑿𝟎 belonging 

respectively to spaces: red, blue and grey. 

Indicating with 𝑠 a generic sample, we want to determine the values 𝑑1, 𝑑2 and 𝑑3 such that: 

 

• providing as RNN input the samples 𝑠 ∊ 𝑆1, the corresponding outputs have an 

accuracy 𝑎 ≥  𝑎1; 

• providing as RNN input the samples 𝑠 ∊ 𝑆2, the corresponding outputs have an 

accuracy 𝑎2 ≤  𝑎 <  𝑎1; 

• providing as RNN input the samples 𝑠 ∊ 𝑆3, the corresponding outputs have an 

accuracy 𝑎3 ≤  𝑎 <  𝑎2. 

 

The process to determine the values 𝑑1, 𝑑2 and 𝑑3 must be repeated over an adequate number 

of samples in order to have a more robust evaluation of values 𝑑1, 𝑑2 and 𝑑3. To accomplish 

this, a number N of input samples must be considered, resulting in N different sets of values of 

values 𝑑1, 𝑑2 and 𝑑3, one set for each sample: 

 

𝑑1
0      𝑑2

0      𝑑3
0      for 𝑋0 

𝑑1
1      𝑑2

1      𝑑3
1      for 𝑋1 

𝑑1
2      𝑑2

2      𝑑3
2      for 𝑋2 

… 

𝑑1
𝑁      𝑑2

𝑁      𝑑3
𝑁      for 𝑋𝑁. 

 

We can compute average/max statistics from these values to determine the RNN’s robustness 

as indicated below: 

 

𝑑1 =  𝑚𝑒𝑎𝑛{𝑑1
0, 𝑑1

1, 𝑑1
2, … , 𝑑1

𝑁} 
𝑑2 =  𝑚𝑒𝑎𝑛{𝑑2

0, 𝑑2
1, 𝑑2

2, … , 𝑑2
𝑁} 

𝑑3 =  𝑚𝑒𝑎𝑛{𝑑3
0, 𝑑3

1, 𝑑3
2, … , 𝑑3

𝑁}. 
 

Notice that we do not give here any minimal values for 𝑑1, 𝑑2 and 𝑑3 since these will depend 

on the specific application and the chosen samples. The values should be used to compare 

between different models. 

2.6.2 Design of Safety Measures for Plausibility Checks 

The second phase is aimed to evaluate the results achieved from the previous phase to establish 

which are the more appropriate safety measures that shall be applied. In this context safety 

measures can consist in a plausibility check to verify the information provided by the RNN. 

The plausibility check is provided by using one or more parallel redundant systems that can be 
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different algorithms that exploit the same inputs of the main system based on the RNN or can 

be systems with algorithms and sensors of different technology (for example radar or lidar) and 

so on. After the RNN based system and the redundant systems have computed their input data, 

there is a third system, the comparison system, that is responsible to perform a comparison of 

the results achieved and shall decide if the output of the RNN based system can be plausible or 

not (Figure 8). 

 

 

Figure 8  The comparison system performs the plausibility check among the RNN output and the output of 

one or more redundant systems and makes a decision. 

In the case that the output of the RNN based system is judged not plausible by the comparison 

system and there is no condition for making a decision, the comparison system shall bring the 

system (and the vehicle) to the proper safe state depending on the current situation. However, 

to decide which is the more appropriate safety measure, the size of the spaces 𝑆1, 𝑆2, and 𝑆3 

determined during the evaluation of the adversarial robustness of the RNN shall be taken into 

account. For example, in the case that 𝑆1 is much bigger than 𝑆2 and 𝑆3 can be considered 

negligible, we can consider the RNN quite reliable and so the safety measure can be constituted 

by an unsophisticated redundant system. A different case, for instance, involves a configuration 

where 𝑆1 is bigger than 𝑆2 but it is not predominant compared to this latter and 𝑆3 can not be 

considered negligible; in this situation we shall design a more robust safety measure consisting 

of more redundant systems. The safety measure, comprising one or more systems, as well as 

the system based on the RNN and the comparison system, shall comply with specific time 

constraints provided by the application requirements. Safety critical applications shall operate 

in real time and so time constraints shall be considered during the design of the RNN based 

system, the redundant system (or systems) and the comparison system. 

 

2.6.3 Safety Validation: Determination of SPIs and Test Length 

The third phase consists in validating the achieved overall system, which includes the RNN 

based system and the safety measures adopted (redundant system or systems). 

The SOTIF provides strategies to verify and validate the system, determining whether the risk 

associated to the function is reasonable (and so acceptable) or not. The verification step consists 

in the testing of the function against the known hazardous scenarios, that are those situations in 

which the function does not behave as expected causing a potential harm for involved people. 

The goal of the tests is to demonstrate that the potentially hazardous scenarios have been 

properly managed, and the associated risk previously discovered can now be considered 

reasonable and so acceptable. 
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After the verification, the functionality of the system shall be validated. The validation consists 

in the execution of tests to discover if there are unknown scenarios that can be potentially 

hazardous and so cause harm for involved people. To discover such unknown scenarios a series 

of tests are performed; such tests are aimed to observe the behavior of the function in as many 

real-life scenarios as possible: if the behavior deviates from the desired one and a potentially 

hazardous situation causing an unreasonable risk for the safety of people is found, some (or 

additional) safety measures shall be planned and developed to reduce the risk at an acceptable 

value. To measure the performance of a functionality, the SOTIF suggests KPIs as metrics; the 

KPIs are aimed to evaluate the performance of the functionality, that is the quality of the 

functionality. But from a Functional Safety point of view, we are interested not exactly to the 

general quality of the functionality, that is how well the functionality performs, but we are 

interested to evaluate how often the functionality is potentially unsafe. For this reason, it is 

better to use indicators that give a measure of the safety performance, the so called SPIs (Safety 

Performance Indicators) [38].  

 

The SPIs give a measure about the dangerousness of the functionality (including the RNN) 

being tested, by telling us (for example) if there are dangerous misbehaviors, dangerous gaps 

in the considered ODD (Operational Design Domain), dangerous gaps in fault responses, 

dangerous defects in requirements, design, etc. In other words, an SPI gives a measure of the 

arrival rate of adverse events. SPIs shall be determined at different abstraction levels; so, we 

have SPIs for the overall functionality (or system), SPIs for the immediate sub-functionalities 

(or sub-systems) up to SPI for the atomic elements such as the RNN based algorithm, sensors, 

etc. Once the SPIs have been defined, for each of them you shall define the target value, a 

threshold value that each SPI shall not exceed to consider the safety related risk associated to 

the functionality acceptable. This threshold value indicates the risk budget that you do not want 

to overcome when your tests ended. 

 

Before starting of the testing phase, a suitable test length shall be determined [34]. The test 

length expresses the quantity of hours or mileage you shall test the functionality and can be 

affected also by the criticality of selected test routes. 

 

2.7 Anomaly Detection  

Anomaly detection (also called outlier or novelty detection in some contexts) aims to detect 

rare events that deviate significantly from the majority of the data or differ from an expected 

pattern. It is an active area of research, with increasing demand since it can be very useful in 

many different domains. Although classical ML methods (e.g., distance-based, ensemble-

based, statistical algorithms) have been widely adopted in anomaly detection tasks, their 

performance is challenged when they are applied on IoT data streams [39]. In this context, some 

of the significant challenges occur due to scalability issues, high dimensional and 

heterogeneous feature spaces, feature interdependencies, cost of feature extraction, sparsity of 

anomalous events and imbalanced classes, and the difficulty to detect conditional anomalies 

(contextual, collective or time-dependent anomalies). 

 

Deep learning methods have been very promising in learning useful representations from high-

dimensional and heterogeneous data. They are scalable with big data volumes, adaptable in 

handling heterogeneity, and do not require cumbersome feature engineering, which enables 

end-to-end optimization of the whole task pipeline [39] [40] [41]. Moreover, representation 

learning of normality/abnormality is another advantage in deep learning methods, since 
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classical unsupervised methods can only estimate statistical deviations without obtaining any 

prior knowledge of expressive representations, which can be useful to generalize and detect 

novel anomalies [40]. Finally, deep sequential models are very effective in dealing with 

temporal complexity and capturing long-term dependencies, a desired property in IoT data 

applications in which time-series data are more closely related to collective or contextual 

anomalies than point anomalies [41] [42].  

 

Deep anomaly detection aims to learn either feature representations or anomaly scores using 

neural networks. Extracted features can then be used with a downstream anomaly scoring 

algorithm in a disjoint learning setting. However, a more recent paradigm is learning feature 

representations of normality [40], in which a single model is used to both learn features and use 

the learned representation of normality to obtain the anomaly scores. A prominent choice 

following this paradigm is the autoencoder model, which learns low-dimensional feature 

representations and then its data reconstruction error is used to define an anomaly scoring 

function. The core assumption, in this case, is that the normal instances can be reconstructed 

more accurately than the anomalies. Autoencoders are straightforward in terms of 

implementation and training, while they are generic, allowing the integration of any deep 

learning network type in their architecture, e.g., CNN, RNN, etc., depending on the nature of 

the data (e.g., sequential, tabular, images). Some drawbacks might occur when the normal 

instances used in the training are not pure enough and contain anomalies. In this case, the model 

might learn a normal representation that is biased by several irregularities, resulting in weakness 

to detect such irregularities as deviations from the normal. 

 

To adapt the autoencoder architecture to sequential data such as the IoT data streams captured 

in TEACHING, the implementation can use recurrent hidden layers similarly to the LSTM-AE 

architecture [43] [44]. The implementation of the LSTM-AE architecture comprises of two sub-

networks, the encoder and the decoder, which are constructed with LSTM units since these 

models can track long-term dependencies in temporal or sequential data, such as sensor and 

time-series data. The computation flow is as follows: a multivariate input vector passes through 

the encoder which consists of one or more LSTM layers of progressively smaller 

dimensionality; the output encoding, is a compact representation of lower dimensionality, 

which is then fed into the decoder subnetwork, the final layer of which, is a reconstruction layer 

of the same size as the original input. The objective function uses the reconstruction error to 

penalize the difference between input and reconstruction.  

 

After the network has been trained with normal instances, the reconstructions errors of the 

normal representation can be used to define the anomaly scoring function. The simplest solution 

is to define a hard threshold by taking for example the highest reconstruction error from the 

normal data and mark all new instances exceeding this error as anomalies. A more robust 

solution is proposed in [43] [44] the reconstruction errors e of normal data are modeled as a 

multivariate Gaussian distribution, and its parameters μ and Σ are estimated using Maximum 

Likelihood Estimation. The anomaly score for a new data point is then computed as 𝑎 =
(𝑒 − 𝜇)𝑇𝛴−1(𝑒 − 𝜇), and a threshold over the likelihoods is learned by maximising the Fβ. In 

general, continuous anomaly scores can be much more informative than just a binary label.  

 

The anomaly detection learning module as part of the AIaaS is intended to be used by a 

cybersecurity application that will function as an intrusion detection system monitoring network 

traffic in TEACHING system. This functionality is aimed to enhance the dependability of the 

system against cyber attacks as described in D3.2 and D5.2. Nonetheless, the generic nature of 

the algorithm makes it suitable for other applications besides cyber threat detection within the 
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TEACHING framework. For example, anomaly detection can be applied to human biometrics 

data, or resources consumption measurements, runtimes, and other unlabeled time-series data. 
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3 AIaaS Architecture 

This section focuses on the AI as a Service (AIaaS) software architecture that supports AI 

applications in TEACHING. Section 3.1 recaps the rationale of the approach, Section 3.2 lists 

the high-level requirements of the architecture, as they were refined after the release of D4.1. 

Section 3.3 provides an overview of the current architecture supporting AIaaS, while Section 

3.4 discusses the data and metadata format adopted for communication within the architecture.  

 

3.1 Rationale 

The TEACHING approach to AIaaS on Edge and Cloud devices relies on designing reusable, 

portable AI application as a combination of composable, generic app-building blocks called 

Learning Modules (LM) and data sources. The rationale of the approach is that: 

 

1. The LM building blocks can be separately ported to and optimized for different device 

HW/SW architectures, increasing their efficiency with respect to common metrics 

(performance, power consumption), allowing careful debugging and verification, as 

well as allowing to exploit specific features of the execution platform within the LM. 

 

2. AI applications are more easily developed, reducing their overall complexity, increasing 

their reliability, and shortening the time-to-market. 

 

3. AI applications effortlessly become as much portable as the LM supporting SW 

architecture is. That is, deploying apps on a plethora of Cloud ad Edge devices is 

allowed by making the focused effort of adapting the AIaaS support to those devices, 

without need of changing the apps and allowing different HW/SW devices to 

interoperate in a distributed software platform. 

 

The aim of developing a dedicated support architecture for AIaaS in TEACHING thus requires 

choosing a trade-off between LM expressiveness and tailoring the LM to the HW. This is 

necessary in order to strike a manageable balance between achieving reusability of AI Apps 

across AIaaS implementations and easing the porting of the whole AIaaS architecture to new 

devices (this shall remain a mostly straightforward and manageable task except possibly for 

HW-specific optimizations). Two main abstract goals were held as reference “lighthouses” in 

the process of architecture design: 

 

• Allow adoption in TEACHING (being fit for the use cases): The architecture must be 

portable and lightweight to suit the automotive and avionic use cases, allowing to build 

generic application with the suite of LM provided, while at the same time allowing to 

exploit specific hardware resources thanks to interchangeable implementations of the 

same LMs. 

 

• Allow reuse in different contexts: The AIaaS supporting architecture shall be useful as 

a tool for porting AIaaS applications in different execution contexts, including the Cloud 

and various types of Edge devices (e.g., mobile units as well as fixed edge devices). 

Developing a full AI stack and development kit would be out of scope and would not 

get any adoption, thus the architecture needs to be designed exploiting existing, 

technologically relevant and/or industrial-standard AI frameworks at its core, namely: 
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o TensorFlow (supported since the mock-up) 

o TensorFlow Lite 

o WindFlow / FastFlow 

 

The impact of the different choices with respect to the core AI framework and their implications 

on the AIaaS architecture design are discussed in the rest of this deliverable, specifically in this 

section and in Section 4. 

3.2 High-level Requirements  

We briefly summarize what the chosen AIaaS approach entails, stemming from its thorough 

description in D4.1 but also including further development after the release of said deliverable, 

i.e., results of the AI research activities and of the SW development and integration activities 

on the first prototype. 

 

The TEACHING AIaaS architecture needs to support: 

 

• LM execution (possibly on different supporting frameworks, according to the AIaaS 

implementations); 

 

• the overall application deploy/manage/adapt/shutdown lifecycle and its impact on 

corresponding LM actions 

 

• provide communications connecting its own local modules, that need exchanging: 

 

o structured data to be processed, or already processed; both batch and streaming 

communication modes are relevant for the AIaaS support; 

o metadata (as associated to the data);  

o model information (i.e., weights, coefficients that encode an AI model); 

o model metadata; 

o exception-like aperiodic messages (possibly with data payload) for specific uses 

within application (e.g., aperiodic out-of-band knowledge reporting, self-

evaluation and issue detection and reaction); 

 

• provide access to local storage, sensors, actuators, remote connections (exploiting the 

same communication mechanisms and modes already outlined): Remote connection is 

also a mean to implement distributed machine learning (DML). AIaaS currently 

supports this model but does not yet implement it. Each app in a specific AIaaS 

instance can be part of a larger DML scheme, but for the moment this scheme is not 

encoded in any specific LM, the architecture only provides the basic tools with respect 

to the task. A future research activity and a revision of the AIaaS and, most important, 

of the set of LM, may allow to systematize and simplify the creation of DML schemes 

among multiple AIaaS App instances. 

 

• support a model where the reliability of (combinations of) LMs can be 

esteemed/evaluated via mechanisms that are built in the LMs and/or via additional, 

dedicated LMs, and can result in periodic/aperiodic actions and reactions within the app 

itself, as well as communication outside the specific app instance. 
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3.3 Overview 

This section provides and overview of the software architecture supporting AIaaS in 

TEACHING. As it reports about an architecture already defined in D4.1, we aim at a self-

contained presentation that does summarize key information from the previous deliverable 

while focusing on changes and advances with respect to that document. Specifically, we shall 

distinguish the overall design of the software architecture from its mock-up implementation. 

The mock-up was used to kickstart the prototype implementation and over time is gradually 

extended with new implementation of all the key modules. 

3.3.1 Architecture Overview 

In Figure 9 we show the current SW architecture of the AIaaS support, basically the same 

presented in deliverable D4.1, despite some minor evolutions. The overall design of the system 

remains the same: applications are provided in a mostly descriptive form (Application 

Description, heavily based on the composition of predefined Learning Modules) which is 

processed by the Application Translator component. The translations employ available 

implementations of the Learning Modules stored locally in the LM Library to produce 

executable code for the AI framework as well as initialization data, parameter/hyperparameters 

for the computation, and support information for the Application Runtime to steer the 

application execution. The computation mostly happens within the chosen AI framework, with 

data flowing through internally3 to the AI framework as well as outside of it. The data is routed 

internally to the AIaaS architecture by the Data Brokering component, which also interfaces: 

 

• to the Sensors API group of devices, to receive data from the physical part of the CPS; 

• to the Local Storage API group of components, in order to save and retrieve data, and 

• to the External communication Interface, in order to allow data exchange with remote 

systems;  

• finally, the AIaaS support and the applications it hosts can influence the physical part 

of the CPS via the DMU module4.     

 

 
3 Note that the AI data bus is an abstraction, an Event Bus design pattern within the AI Framework that may not correspond to 

a software component in the final implementation. 
4 Within TEACHING use cases, the influence on the physical world is limited to setting parameters of the dependable systems 

that actually interact with the physical world, e.g., setting the driving mode. This can affect the status of the driver and 

passengers, but is a safe change to apply at any moment. Nevertheless, the architectural design takes into account that the DMU 

interacts with dependable system and may thus refuse any demanded action.   
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Figure 9 AIaaS SW Architecture Diagram, current design 

With respect to the design presented in D4.1, a direct interaction between the code in the AI 

framework and the External communication interface is being studied (see Section 4.5).  

The Figure 9 shows what the final design of the AIaaS system is expected to be. In the rest of 

this Section 3 and in Section 4 we discuss the features of the AIaaS support, as well as the 

design and implementation of its components. It is thus necessary to also show the current 

implementation status of the whole architecture, which we present next in Section 3.3.2. 
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Figure 10 AIaaS SW Architecture Diagram, M18 Prototype 

3.3.2 Prototype Architecture 

With respect to the current version of the architecture, that we presented in Figure 9, the mock-

up has simplifying assumptions. The M18 prototype (see Figure 10) that evolved from the 

mock-up follows those assumptions. A few modules and interfaces are not yet needed, some 

have not yet been developed or integrated. The prototype design differs from the reference one 

in the following aspects: 

 

1. As we are experimenting with the Application Runtime and Application Logic code within the 

prototype apps (that are for this reason fully valid Python code) the following modules are different 

or are not yet implemented (see Sections 4.2 and 4.3): 

 

• Information concerning the application description is embedded within the 

application itself via self-describing objects that are programmatically built. The 

app is thus fully valid Python code, not a custom description (an alternative way 

of seeing this is that the application description is part of the Python code of the 

application). 

• Application Translator is not yet used. 

• The LM module library is not yet used.  

• Application Logic is still embedded within the Application Runtime Module. 

• The application runtime code is also embedded within the application. 

 

2. There is no connection between the Data Ingestion/Brokering and the AI Data Bus, data 

exchanges with MQTT are mediated by the Application Runtime’s scheduler (see Section 4.2). 
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3. There is no direct connection between the AI framework and the External Communication 

Interface (see Section 4.5).  

3.3.3 Application Description 

The overall purpose, requirements, and rationale of having a formal, declarative document 

format detailing the structure, constraints and intended behaviour of an AI application have 

been discussed at length within deliverable D4.1 Section 4.2 (specifically sub-Section 4.2.2), 

which we refer to. The content of the application description can be summarized as: 

 

1. A list of the LMs that compose the application,  

2. LM parameters and hyper parameters 

3. LM initialization data / models 

4. A description of all communications required among the LMs, with sensors, data 

storage and outside the AIaaS instance (the Application Graph of typed data streams) 

5. constraints and preferences for the LM execution, to help chose the best LM 

implementation 

6. code snippets, if needed, that deal with special cases and exceptions specific to the 

application semantics in an unstructured manner. They are to be executed as part of the 

Application Logic. 

 

While the abstract design of the Application Description has not changed, the first 

implementation in the M18 prototype relies on the information being provided by Python code. 

The fully descriptive format is currently represented by programmatically built Python objects 

that specify the necessary details. For the sake of clarity, we summarize some implementation 

details that are described later on, in Section 4: 

 

• Each LM is an instance of a Python object and is provided parameters at creation. 

• The Application Graph, i.e., the set of communications streams among the set of LMs, 

sensors, storage elements et cetera, is also a Python object programmatically created 

when initializing the actual computation, before the application can start. 

• Code snippets that implement custom function for the application are directly provided 

as Python functions within the application code (see Section 4.2). 

• Once the set of objects describing the whole of the application structure has been 

created, the application can be started. 

 

As such, there is not yet a strong separation between the declarative description of the app and 

its imperative code. 

 

3.3.4 Data Routing Definition in the M18 Prototype 

At a high level, an application developer can declare an application that uses the TEACHING 

framework by providing a few instructions in a Python file. We refer to the example application 

stress.py that performs stress recognition and can be found within the main AIaaS software 

repository5. 

 

 
5 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/blob/master/applications/stress/stress.py 

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/blob/master/applications/stress/stress.py
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In order to route data, the application developer declares the sensors and learning modules that 

needs to be used, and then defines the routing of the application, in the form of a list of edges 

forming a computational graph of information flow. For example, the code 

 
app.route([ 

    (eda, teaching.output, {}), 

    (eda, lm, {}), 

    (lm, teaching.output, {})  # Exit point 

]) 

 

instructs the runtime to route data from the eda sensor to the output (for display) and to a 

learning module named lm (for prediction). The data emitted by lm is then further routed to the 

output. The above code is a declaration for setting up the environment, it specifies some links 

within the Application Graph, but does not cause yet any data to flow. 

  

When the application is run, the outputs (in our example, the eda data and the predictions from 

the lm) can be obtained by the last LM in the chain as soon as they are available. 

 
while True: 

        first_output, second_output = await app.output() 

 

Data from different sources may be available at different times, and a generic LM may need all 

of its data sources (or a specific subset of them) before it can start a computation. The abstract 

definition of data routing provided by the Application Graph is thus connected with the 

execution constraints of each LM within the application. 

  

The pipeline graph outlined above is a very simple example where the data availability 

constraints are obvious. Different synchronous and asynchronous computations among the set 

of LMs in more complex Application Graphs are possible at application runtime. They can be 

managed according to the dataflow6 computing approach. The actual execution order (the firing 

order, in dataflow lingo) is chosen by the Application Runtime component (see Section 4.2).  

 

3.4 Data and Metadata Formats 

A common data format is desired for data that can flow through the LMs and AIaaS architecture 

components. Requirements on the Data format were clear since previous Deliverable D4.1. The 

format had to provide a common data representation that is both architecture-agnostic and 

language-agnostic enough, and that causes a low data conversion overhead, in terms of: 

 

1. absolute performance and memory occupation – especially on constrained HW 

2. performance on the critical pat – no data conversion should be required in the 

most demanding part of the AIaaS architecture, namely the AI framework  

3. added complexity of SW – complexity would impact on code maintainability 

and system dependability  

As transferred data need to be associated with a type system and can be structured (e.g., for 

passing tensors with data and model weights), from point 3 it follows that serialization, 

deserialization and data conversions have to be performed via support libraries / off-the-shelf 

 
6 https://cloud.google.com/dataflow 

https://cloud.google.com/dataflow
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code, to avoid the pitfall of rewriting common code. Finally, in the same format it should be 

possible to store, along with the data, suitable metadata to support AI applications. 

In the following Sections 3.4.1 and 3.4.2 we outline the two solutions devised for data that 

move across the whole AIaaS support, and data that is local to the AI framework. 

3.4.1 Data format and message structure outside the AI framework 

Outside of the AI subsystem (e.g., TensorFlow) and specifically when using the Data brokering 

system, we plan to use Protocol Buffer as the main data format.  

Protocol Buffers are the native format of TensorFlow and are publicly documented7 by Google. 

They match the stated requirements of standardization, limited overhead, parsing and 

conversion code being available off the shelf for multiple programming languages. 

 

 As data may need to be routed to different LMs, to be retrieved at a later time and upon specific 

conditions or by a different app than the originating one, metadata associated to the data is 

needed. The foreseen metadata needs include: 

 

3 application/LM that created the data 

4 time of creation 

5 data type and structure, if not encoded in the data format 

6 source / destination component and module for data to be routed  

To support attaching metadata to the data, we plan to exploit ProtocolBuffer custom options, 

natively supported by Protocol Buffer since v2. 

3.4.2 Internal data Format for the AI framework / AI data bus 

For the sake of communicating data among LMs, a simpler data format is used in the M18 

prototype, the DataPacket wrapper class. Within the AI framework, data flowing through 

learning modules still needs to be annotated to support the functionalities offered by the 

framework. For example, most of the times the data should have an associated timestamp, 

which is used to synchronize different streams within the framework. Another annotation 

indicates semantically what kind of data is flowing through an edge, for example “normal” data 

or “label” information for training. 

 

As of now, the DataPacket wrapper includes annotations for the timestamp and for the type. 

The DataPacket: 

 

• is a Python structured type,  

• it provides storage for array data with labels, associated timestamps and type information  

• it does not enforce a serialization at the LM boundaries for TensorFlow and TensorFlow 

lite 

• it can be easily used by the AI bus implementation (the AI bus is currently the function 

acting as data dispatcher within the Application Runtime). 

 

As the M18 AIaaS prototype is fully Python based, the Datapacket can be used also outside of 

the AI Framework instead of the designed ProtocolBuffer format. Whether the DataPacket is 

 
7 The ProtocolBuffer interfaces are documented here: https://developers.google.com/protocol-buffers, and the custom options 

extension docs can be found at https://developers.google.com/protocol-buffers/docs/proto#customoptions  

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/proto#customoptions
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still going to be used outside the AI framework, and in what implementations of the AIaaS 

besides those based on TensorFlow, it is a matter to be discussed after the M18 prototype 

finalization activities. 



TEACHING D4.2                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 37 - September, 2021 

4 AIaaS Platform Components 

This section describes the current status of implementation and choices of all components of 

the AIaaS system, as they are in current M18 prototype.  

 

For the sake of clarity, we underline again the distinction between LMs, which are the building 

blocks of AI applications, and the software components that compose the AIaaS architecture 

supporting the execution of applications made from LMs. While from a SW engineering 

viewpoint both kind of entities are software components, when we speak of components in this 

deliverable, ad definitely in this section, we are referring to the software components that 

compose the AIaaS support architecture.  

 

The AIaaS architecture must support LM modules written using TensorFlow, TensorFlow lite, 

and FastFlow skeletons. Current AIaaS design can only support one such framework at a time 

(i.e., no mixing of frameworks when combining LMs into an application). 

  

The main programming language we support inside AIaaS application (i.e. as a glue language 

in addition to the LM blocks) is Python. We foresee that this choice will not need to be revised 

even when supporting different languages and execution modes (compilation vs interpretation) 

for the implementation of the LMs. We assume Python execution is always available on all 

project HW/SW platforms. Snippets of applications can be encoded in Python, if the platform 

does not support a full python stack, Python-to-C translation with Cython can be considered. 

 

The rest of this section discusses the AIaaS components currently existing in M18 prototype 

and depicted in Figure 10 (Section 3, on page 32). Section 4.1 starts from the AI Framework 

that the AIaaS leverages for LM execution. Section 4.2 describes the Application Runtime and 

Application Logic, it discusses the implementation of the Runtime as well as of the data flow 

and computation scheduling within the AIaaS architecture. Section 4.3 discusses the designed 

function of the Application Translator (although its current implementation is still minimal). 

Section 4.4 (Data Ingestion/Brokering) and Section 4.5 (External Communication) focus on the 

design and the current implementation of the components providing communication support 

respectively within the AIaaS system and with systems reachable via the outside networks.  

The last three sections describe the components providing access to the physical part of the CPS 

the AIaaS subsystem lives within, namely the set of its sensors (Sensors API, Section 4.6), the 

local permanent storage (Local Storage API, Section 4.7), and the Decision Management Unit, 

the component allowing AIaaS apps to “act” on the physical world (Section 4.8). 

4.1 AI Framework 

The AI framework hosts the learning modules as they are instantiated, linked together and 

executed to perform any Machine Learning tasks needed by the AI applications. This module 

leverages existing, in most cases Industry-standard ML technologies in order to provide the 

implementation of the LM functionalities.  

The choice of the ML technology used to implement the AI framework is not cast in stone: it is 

a parameter of the AI Framework implementation. All LM modules are implemented on top of 

the ML framework contained inside this module. LMs can have different implementations (with 

the same semantics) over different ML frameworks. According to the actual choice made in the 

AI framework implementation, the corresponding set of LMs is to be used.  
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The internal implementation of the AI framework is surrounded by a thin interface layer whose 

purpose is to provide the interface of the AI Framework unchanged despite the different choices 

made for the internal implementation (TensorFow, TensorFlow lite and so on). The interface 

layer, where needed, is made up of a set of adapters translating different data representations 

and possibly different internal APIs as needed. The same set of high-level LM semantics and 

interfaces are expected to be provided independently of the inner AI framework. At the moment, 

given the limited nature of the current AIaaS system prototype supporting only Tensorflow, this 

functionality is not implemented and the AI Framework constitutes mostly an abstract entity. 

4.2 Application Runtime 

The Application Runtime implements all tasks that are common support of LMs and are 

common to all TEACHING apps.  

 

As stated in D4.1, the Application Runtime component manages the main execution workflow 

of an AIaaS application. Its core functions include: 

 

1. the instantiation of the underlying AI framework that hosts the learning modules; 

2. instantiation and execution of the LMs of the application;  

3. configuration of the AI data bus to correctly route the data stream to the relevant LMs. 

4. manage the Application Logic, triggering and providing data to its function. 

 

This implies several key interoperation features that depend on the assumptions made on a 

specific implementation of the AIaaS support. We describe the design of the AR and then 

discuss its current implementation assumptions and simplifications. Key differences set apart 

interpreted, Python-based frameworks (i.e., TensorFlow and TensorFlow lite) from those based 

on offline compiled code, like FastFlow or WindFlow are (they are both based on C++ 

compilation).  

  

Instantiation of the AI framework – the initialization and allocation of resources for the AI 

framework is influenced by the specific AI framework employed. Python code (Tensorflow, 

Tensorflow-Lite) may rely on different HW and SW prerequisites being available, which must 

be checked at initialization time. For compile-based frameworks the initialization shall check 

that compiled version of all the LMs are available in executable form. 

 

LM instantiation and execution – the AR needs to support LMs for: 

 

• Instantiation – Setting up interpreted Python code for execution poses a lesser problem, 

while executing assembling already-compiled code into applications requires the runtime 

to either manage binary linking or dynamically loaded libraries of LMs. The execution 

of LMs. 

• Execution – computation in the LMs requires data. The runtime is in charge of bringing 

data to the LMs and firing their execution, exploiting the routing information provided 

by the Application Graph (currently implemented as a Python object). It shall be noted 

that LMs have a dataflow-like semantics, where execution is possible when all the 

needed data inputs are present. Dealing with real world data without risking stalls 

requires a specific semantics defining which inputs are required, and how to deal with 

missing optional inputs (e.g., keep previous data, send a predefined empty data). Two 

extreme approaches are possible, the more general and concurrent one is to provide each 

LM with the information needed to directly interact with the Data Brokering, 
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implementing most communications and all nondeterministic input handling directly 

within the LMs. In the diametrically opposite approach, the one that the AIaaS M18 

prototype adopts, all Data Brokering interactions are instead kept within the Application 

Runtime, which forwards the actual data to the LMs and implements the semantics of 

non-deterministic control. 

• (Hyper-)Parameter setup/update – several LMs sport a very different behaviours 

according to their parameters. Choosing, forwarding, and possibly updating LM 

parameter is a task that depends on AIaaS and LM implementation, but whose semantics 

are deeply tied with the application ones.  

 

AI data bus configuration – the AI data bus is intended as a low overhead mechanism for LM-

to-LM communication, skipping most or all needs of data conversion (as the LMs within a 

single AIaaS are implemented on the same AI framework) and skipping unnecessary 

synchronizations when the LMs cooperate in a straightforward way (e.g., simple pipelines). 

Setting up this kind of communication channels is done by the AR at LM initialization.  

 

Application Logic – citing from deliverable D4.1, “the Application Logic is a per-application 

software module. It embodies those parts of the application which are in charge of handling all 

special cases and actions that depart from the main workflow of the Application Runtime 

(deployment, data collection, and data analysis)”. Due to the currently experimental status of 

the Application Runtime as well as of the test applications, where each prototype is still 

including all boilerplate code from the AIaaS, the Application Logic module is not yet defined 

within the Application Runtime, whose initial design is still valid but will be implemented later 

on, after the Application Translator and Application Runtime components are more mature. 

 

4.2.1 Application Runtime Implementation  

The current design, implemented in Python and stemming from the initial mock-up, is a 

simplified version of the Application Runtime exploiting the initial assumption of Python-only 

code and skipping modules which are yet in development, or are not useful for the first 

prototype.  

Specifically, the current implementation of the AR does not yet host a formally defined code 

section to implement Application Logic. As stated before that specific sub-module is not 

currently defined: 

 

• Data messages from the various sources8 are pushed as data packets to the LM by the 

AR, that is also in charge of getting back the results, both for ordinary data streams and 

aperiodic (exception-like) ones. 

  

• This also entails that the dataflow firing policy of the LMs is currently implemented 

within the Application Runtime, and all interactions of the LMs with the Data Brokering 

are mediated by the AR. 

 

• The application start-up and initialization is defined within the application itself as 

Python code as boiler plate (still evolving) code. As the features of the AR evolve and 

settle down, the initialization code will move to the AR. The Application Translator 

 
8As already described in D4.1 and detailed in this document in Sections Error! Reference source not found. and 4.5, 

sources are actually identified by topics in the publish/subscribe networks providing local and global connectivity.     



TEACHING D4.2                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 40 - September, 2021 

component will then parse application declarations and hook them into the appropriate 

calls to the AR. 

4.2.2 Data Flow and Activity Scheduling in the M18 Prototype 

The Application Runtime moves the data from the sources (typically sensors) via the Data 

Broker to the output(s) by following the routing instructions provided by the application 

developer, and taking care that each module that has all incoming edges with data has in turn 

its execution method called, e.g., node.train(x,y). This logic is currently implemented in the 

function “tick” of the data_bus module according to the following pseudocode, which is 

endlessly executed until the application stops/is stopped. 

 

def tick(): 

    for each node in the routing graph: 

        if the node has no incoming edges: 

            # it is a source such as a sensor 

            buffer[node] = node.read()  # Returns a buffer of 

readings 

        else if all nodes (x) in the incoming edges (x)->(node) have 

                data in their buffer: 

            merge and sync the incoming data 

            if node == teaching.output: 

                return the data 

            else: 

                call the node with the merged data 

        else: 

            process this node later, when all inputs are available 

 

 

4.3 Application Translator 

The Application Translator software component is designed to receive a description of the 

application (an Application Description document, see Section 3.3.3 and D4.1 Section 4.2.2) 

that is mostly of declarative nature and relies implicitly on the set of LMs to be available in the 

current AIaaS instance. The Application Translator then plays two roles: 

  

1. it generates and configures the ready-to-be-executed instances of the LMs that are part 

of the application, processing the declared application structure. This entails in turn: 

 

• extracting the information about what LMs are needed by the app; 

 

• identifying suitable LM implementations that are made available in the LM 

library. When choosing the LM implementations the AT will consider both hints 

provided by the application, and the features provided by the LM hosted by the 

library, aiming at the best match according to the application-specified metrics 

(e.g., absolute performance, power usage reduction, self-evaluated reliability 

and so on); 

 

• composing them in the way needed by the AI framework that is in use. 

Depending on the use of Tensorflow, Tensorflow-Lite, WindFlow or other AI 

frameworks, the LM composition can be just a matter of trivial textual 
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juxtaposition of source code, it may require class instantiation and template-

based programming, or it may need runtime linking and dynamic library 

provisioning). 

 

2. it provides the application runtime component with the Application Logic elements as 

derived from the Application Description. As the standard part of the Application 

Runtime component (see previous section) is progressively extended and refined, 

exceptions and special cases will emerge that AI applications need to manage in a code-

efficient way. The Application Translator will extract such snippets of code from the 

declarative form of the application and pass them to the Application Logic sub-module 

of the Application Runtime. 

 

At the current stage of development, the M18 prototype is Python only and all applications are 

still fully valid Python code, embedding all the AIaaS support code in their own classes. As 

such, no translation is needed, and no special logic is extracted or generated. The current 

Application Translator is a no-op class and both the Application Logic and the LM library not 

yet in use within the prototype.  In the next months these modules will be added, with a 

progressive implementation of the two roles outlined in this section for the Application 

Translator. 

4.4 Data Ingestion / Brokering 

As described in previous deliverable D4.1, all the components of the AIaaS architecture locally 

communicate with each other via the Data Ingestion/Brokering component.  This component is 

built around the MQTT protocol, based on the Paho libraries9 available for both Python and 

Java. Among the reasons for choosing MQTT are that it is a lightweight pub/sub protocol, well 

supported by, and used on, embedded and mobile devices, as well as by conventional OSes (and 

thus on Clouds). MQTT is thus a reasonable middle ground and a flexible gateway toward the 

more powerful, expressive and extendable Kafka protocol that is employed in the overall 

communication architecture, as we describe in this document and in deliverable D2.2. Figure 

11, which we include from D2.2 for the sake of readability, shows the overall organization of 

the TEACHING pub-sub network.  

 

The AIaaS components (as well as, possibly indirectly, any learning modules instantiated 

onboard the mobile node) can exploit MQTT both to communicate with each other and to access 

the whole infrastructure. The modules are thus provided with mechanisms that via topic-based 

addressing allow several forms of communication, including as elementary cases point to point, 

broadcast, multicast, and gather communications. To actually send/receive data, that will be 

transmitted through the broker, the AIaaS support components use various forms of the 

subscribe and publish functions in the library. 

4.4.1 Data Brokering Implementation 

We describe the Python interface to the Data Brokering. The subscribe method accepts 2 

parameters: a topic or topics and a QOS (quality of Service, with values within 0-2) as shown 

below.  

subscribe(topic, qos) 

1. Method 1- Uses a single topic string. This is an example function call. 

 
9 https://www.eclipse.org/paho 

https://www.eclipse.org/paho
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client1.subscribe(“house/bulb1”,1) 

2. Method 2- Uses single tuple for topic and specifies QOS level 

client1.subscribe((“house/bulb2”,2)) 

3. Method 3- Used for subscribing to multiple topics, using a list of tuples 

[(topic1,qos),(topic2,qos),(topic3,qos)] 

client1.subscribe([(“house/bulb3”,2),(“house/bulb4”,1),(“h

ouse/bulb5”,0)]) 

 

The subscribe function returns a tuple to indicate success, as well as a message id which is used 

as a tracking code. 

(result, mid) 

The MQTT broker/server will acknowledge subscriptions, which will then generate 

an on_subscribe callback. The prototype of the callback function is shown below. 

on_subscribe(client, userdata, mid, granted_qos)  

 

The publish method accepts 4 parameters. The parameters are shown below with their default 

values. 

publish(topic, payload, qos, retain) 

The payload is the message you want to publish, the topic is where you want to publish the QoS 

is the reliability for the sent messages, the flag retain “on” allows the broker to store the last 

message and the corresponding QoS for that topic. 

client.publish("house/light","ON",”1”,”off”) 

Before a client can start publishing or subscribing a simple initialization is required: creating 

an instance, connecting to the broker, and finally publishing/subscribing to data, as in the 

following example: 

broker_address="192.168.1.184"  

client = mqtt.Client("P1") #create new instance 

client.connect(broker_address) #connect to broker 

client.publish("house/bulbs/bulb1","OFF") 

client.subscribe("house/bulbs/bulb1") 

4.5 External Communication Interface 

The external Communication Interface component allows local AIaaS modules to connect to 

the network and communicate LM-generated/required data with Cloud services and other 

instances of the AIaaS architecture. This module exploits a custom Kafka client which is 

developed in the context of WP2 and is used as a bridge between the local MQTT broker (within 

the Data Brokering component) and the global TEACHING pub/sub network. The 

implementation of the Kafka client that we use in the mock-up and in the first implementation 

of the AIaaS subsystem is coded in Java. 

 

The bridge is configured with two lists of topics that are to be forwarded in both directions, 

defining what kind of information is allowed to flow and thus providing isolation from the 
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network to the local environment (the applications and sensor data within the AIaaS) as a basic 

mechanism for keeping any kind of sensitive and private data local to a specific CPS.  

 

The pub/sub mechanism provided by the External Communication Interface is supported within 

WP2 at the platform scale, as it is shown in Figure 11 (which is also in D2.2). The left part of 

the figure shows the (simplified) edge-based AIaaS architecture and its interaction with the 

Kafka-based network. The centre and right portion of the figure show the deployment on top of 

Near-Edge and Clouds of the networking and computation support.  

 

The basic mechanism already provides the means to coordinate multiple instances of the AIaaS 

support, either on Cloud or Edge and Mobile devices. It thus allows to implement federated and 

distributed learning algorithms as a set of application deployed on multiple AIaaS instances. 

The approach is exploited in the first release of WP4 demonstrators and described later in this 

deliverable. Additional features are being studied and developed, which complement the 

fundamental approach: 

 

1. Providing the Kafka-MQTT bridge client with the ability to exploit specific message 

fields to programmatically generate sub-topics on the receiving side, thus allowing for 

sender-controlled message routing on the receivers CPS. This specific set of features 

can help structure complex applications and implement distributed/federated learning 

patterns. 

 

2. Allowing LMs to directly interact via Kafka (e.g., skipping the Data Brokering and 

MQTT). The approach is being studied as it represents a different trade-off that may be 

interesting in the context of “core” instances of the AIaaS, that is deployed as services 

on top of full-blown Cloud resources. Figure 11 on the right shows two examples of 

LMs, one interacting via the bridge client, and another one directly via Kafka. Adding 

such an interface can make more complex the model and implementations of LMs but 

may allow to exploit Kafka-specific APIs to provide the LMs with advanced support 

for distributed/federated learning.  
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Figure 11 Overall PUB/SUB Communication Organization spanning WP2 and WP4 (from D2.2) 

4.5.1 External Communication Interface Implementation 

We only provide a short description of the implementation for the sake of completeness. For 

further technical details we refer the reader to deliverable D2.2, where the full description of 

the bridge pub/sub client is provided. 

 

The client is implemented in Java, and in current prototype is exploited via Java and Python. It 

includes two connectors relaying messages from MQTT to the Kafka network and vice versa. 

The Kafka Connect source connector reads data from MQTT and publishes them to Kafka, 

while a Kafka Connect sink connector reads data from Kafka and publishes them to MQTT. 

Both connectors act on a configurable list of pub/sub topic trees, that works as an allow list for 

the data transfer by controlling the subscription operations of the bridge. The allow lists can 

match either single topics or whole subtrees starting with a given topic. 

 

The external communication interface was tested and verified during the integration activities 

but is not always used in the experiments presented in this deliverable. Some tests rely on a 

simpler interconnection of multiple AIaaS instances obtained by sharing the MQTT broker. The 

MQTT architecture does not allow this kind of approach to scale to fully distributed, 

geographically dispersed settings, but the choice eased separate development and debugging of 

the AIaaS and LMs features.     

4.6 Sensors API 

The role of the Sensors API is to wrap the actual sensors that publish their streams to a message 

broker in a callable API that can serve data upon request from whichever module asks for the 
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respective data. In order to implement this, the sensor API maintains a data buffer, which 

collects data as they arrive at the message broker. The buffer keeps the latest messages from 

each sensor. When a request to read data from the Sensor API is made the API returns the 

respective set of latest messages and automatically empties the respective queue in order to 

receive new messages from this sensor. This guarantees that the Sensor API provides the latest 

readings for a sensor every time it is called.  

 

Every time a new sensor is added to the TEACHING platform an instance of the SensorAPI is 

instantiated in order to provide access to the sensor. The constructor (init) also defines the size 

of the buffer. The open method creates an instantiation of a connection to the message broker 

to the respective topic of each sensor. 

 

The read method returns the content of the buffer and clears the buffer. Figure 12 shows the 

basic operations scheme of the Sensors API in the AIaaS system. In order to provide room for 

scalability, we assume that the drivers needed for each case are available in order for each 

sensor to be able to publish on the MQTT bus, so these drivers can not be part of the AI-toolkit. 

In our case, all the appropriate drivers have been developed to support our use cases and demo 

applications. 

 

 

 

Figure 12 Sensors API in the AIaaS system. 

 

 

4.7 Local Storage API 

The aim of the Local Storage API is to provide the other TEACHING components with stored 

versions of the ML and AI models and also allow the long-term storage and reuse of newly 
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trained models. Apart from models, the Storage API allows to store configurations, temporary 

files and caches, to store results and any other custom binary object. 

 

For this purpose, the Local Storage API maintains an SQLite (SQLiteStorage class) for storing 

the various objects (instances of an Item class), which have an id, a name and description, a 

storage type, a timestamp and the filename where the actual object is stored. The API provides 

methods for adding items to the storage, retrieving them from the storage, getting their metadata 

by id or name and also for removing items from the storage. Finally, it has methods that allow 

to store the item to the disk or retrieve it from the disk, but this functionality has not been used 

in the current mockup. 

4.8 Decision Management Unit 

The aim of the DMU is to provide an interface for communicating with the action units of the 

vehicle.  

 

   The only interfaced action unit so far is the driving profile selector, so the DMU provides 

methods for connecting the DMU with the vehicle (constructor), setting a profile change 

(method set_action), an asynchronous listener for consuming new signals that arrive from ML 

modules, and a publish method for sharing the action with other modules. All the 

communication with the DMU is directed through the message broker.  

Currently, for the purposes of the mockup, we have developed a set of functions that have been 

used in the demo app that sends the LM outputs to the message broker and that may implement 

the application logic as well as the drivers needed on the autonomous vehicle side to be able to 

receive the DMU commands and apply these commands to the vehicle itself. 
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5 AIaaS Learning Modules 

In this section we provide a detailed list of planned LMs APIs. A Learning Module (LM) is just 

a set of utilities to satisfy a specific learning goal. This means there is not pre-defined 

abstraction level for all the modules which can provide out-the-box functionalities for classic 

learning algorithms (e.g., RNN), specific tasks (e.g., Classification), learning paradigms (e.g., 

Continual Learning) as well as orthogonal learning features (e.g., Privacy-Preserving 

Learning). 

 

Learning modules can be divided in two main categories: 1) Standard LMs and 2) Support LMs. 

The first type of learning modules are objects that can be instantiated in a computational graph 

defining the application logic; the second are objects that can be instantiated independently 

from the application logic and offer specific functionalities that are often used by Standard LMs 

to address a specific need. In Table 6 the planned LMs to be offered in the AIaaS system are 

reported.  

 

Table 6 Table of Learning Modules available in the AIaaS 

 

Name of the LM(s) Description Standard / Support LM 

Time series RNN Learning module implementing 

sequence learning and 

classification capabilities in 

teaching and based on standard 

Recurrent Neural Networks 

(RNN) 

Standard 

Time series RC-ESN Learning module implementing 

sequence learning and 

classification capabilities in 

teaching and based on standard 

Reservoir Computing techniques, 

in particular Echo State Networks 

(ESN) 

Standard 

Federated Learning Learning module for 

implementing federated learning 

applications: based on how it is 

instantiated it can also work as the 

centralized server in charge of the 

synchronization. 

Standard 

Continual Learning This module offers basic 

functionalities to the other LMs to 

handle ever-changing data 

distributions and update a 

prediction model efficiently. 

Support 

Reinforcement 

Learning 

The Reinforcement Learning 

module offers the main 

Standard 
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functionalities for developing 

applications learning from sparse 

rewards instead of direct 

supervision. 

Privacy-Preserving 

Algorithms 

The privacy preserving learning 

module offer support 

functionalities to augment the 

privacy of the developed 

applications and estimate 

quantitatively the eventually 

leaked privacy 

Support 

Dependable AI The dependable AI LM offers 

basic functionalities to ensure the 

dependability of the developed 

applications 

Support 

Hyper-parameters 

Selection 

Hyper-parameters selection 

utilities that ca be used black-box 

functionalities by standard LMs. 

Support 

Anomaly Detection Basic support functionalities for 

anomaly and cyber-attacks 

detection  

Support 

 

The rest of section is organized as follows: Time Series RNN and RC-RNN are detailed in 

Section 5.1 and 5.2, respectively. Section 5.3 describes more in detail the Federated Learning 

LM while Section 5.4, Section 5.5 and Section 5.6 introduce three different support modules 

namely the Continual Learning, Privacy-Preserving and Dependable AI ones. Section 5.7 

details the Hyper-parameters Section support LM and Section 5.8 the Anomaly Detection one. 

Finally, Section 5.9 present the current state of the design for the Reinforcement Learning LM.  

 

For each Support or Standard LM the currently planned (or partially implemented) API is 

described in more details. These APIs are not cast in stone: while they provide an important 

first step supporting the mock-up AIaaS design and implementation, they may be subject to 

change and further refinement with the progressive development of the AIaaS functionalities, 

towards the preparation of deliverable D4.3. 

5.1 Time-series RNN 

This module provides a basic interface for deploying Recurrent Neural Networks into any 

TEACHING application with a straightforward and automated interface. The main rational for 

Standard LM is to be as agnostic as possible with respect to the Application Graph they are part 

of. This approach favours modularity, reusability and easy-of-use. A RNN can be easily 

instantiated to handle incoming time-series both for training and inference. The high-level API 

provided in this LM allows even less-experienced software developers to tackle complex AI 

tasks with ease.  
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5.1.1 Execution modes  

This LM has two execution modes: 

 

• Training: modality to train the underlying prediction model. 

• Eval: modality to use the prediction model in inference only.  

5.1.2 Input and output 

The LM expects the data to be formatted as Numpy10 tensor data of the following format 

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be 

assumed as a sequence learning problem, a sequence classification problem otherwise. The 

LM outputs the success or error states in the training mode (after each call), while it returns also 

the predicted tensors (batch_size, target_size) for the eval mode. 

5.1.3 List of API calls 

Here we list the main API of the LM: 

 

• init(n_layers, n_neurons, optimizer_hyperparams) -> State 

• train(input_tensor) -> State 

• eval(input_tensor) -> predicted tensor 

5.1.4 Implementations of the LM 

The implementation of this module is in Tensorflow for the training and eval modality, only 

in eval for the Tensorflow Lite implementation. Both implementations can work on CPU and 

GPUs enabled hardware. 

 

5.2 Time-series RC-ESN 

The Time-series RC-ESN operates similarly w.r.t. the Time-series RNN LM but is 

implemented differently. In particular it uses Echo State Networks (a particular family of 

Reservoir computing techniques) that are generally more efficient and indicate than RNN for 

constrained edge devices.   

5.2.1 Execution modes  

As for the Time-series RNN LM , this LM has two execution modes: 

 

• Training: modality to train the underlying prediction model. 

• Eval: modality to use the prediction model in inference only.  

5.2.2 Hyperparameters 

At setup (set): 

 

• num_recurrent_units_per_layer: int; constraints: x > 0; default: 100 

 
10 https://numpy.org 
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• num_layers: int; constraints: x > 0; default: 1 

• input_scaling: float; constraints: x > 0; default: 1.0 

• recurrent_scaling: float; constraints: x > 0; default: 1.0 

• bias_scaling: float; constraints: x > 0; default: 1.0 

• leaking_rate: float; constraints: 0 < x <= 1; default: 1.0 

At runtime (set/get) 

 

5.2.3 Input and output 

The LM expects the data to be formatted as Numpy tensor as follows: 

 

• Input: tensor of shape (batch_size, sequence_length, input_features_size) 

• Target: tensor of shape (batch_size, sequence_length, target_size). If sequence_length 

is None, it is assumed that the target refers to the whole sequence (typical case for 

sequence classification). Otherwise, sequence_length must be equal to the 

corresponding dimension in the input: in this case, to each time step corresponds a 

target. 

• Target_mask: optional mask of shape (sequence_length) that can be used to exclude 

some time steps from the target tensor. This is required for time-series for which only 

partial ground-truth data is available. 

The LM outputs the training loss in the training mode (after each call), while it returns also 

the predicted tensors (batch_size, target_size) for the eval mode. 

5.2.4 List of API calls 

Here we list the main API of the LM: 

 

• init(network_hyperparams, optimizer_hyperparams, return_sequences=False, 

return_state=False, masking_value=None, optimizer?) 

o Network_hyperparams: num layers, architecture (e.g., gated), readout type, … 

o Masking_value: if not None, it is the value used for masking the target tensors 

 

• train(input_tensor, target_tensor, initial_state?, stateful) 

o stateful (bool): whether the network should maintain an internal state across 

calls (True), or instead the state is reset at each call (False). 

o optimizer: Optimizer object, or string “classification”/”regression” 

 

• eval(input_tensor, initial_state?, stateful) -> predicted tensor 

5.2.5 Implementations of the LM 

The implementation of this module is in Tensorflow for the training and eval modality. 

If the readout layer is linear and the optimizer is a closed-form optimizer, training is supported 

also in Tensorflow Lite. Both implementations can work on CPU and GPUs enabled hardware. 
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5.3 Federated Learning 

This learning module provides the core functionalities for distributed and federated learning 

with both edge and server nodes functionalities. More about the usage of this LM can be found 

in the Federated Learning use-case mockup of Section 6.3.4. If instantiated as an edge node this 

LM expects to receive an initialization model, updates it locally and re-sends it on the shared 

MQTT data broker. Otherwise, if implemented as a server node, waits for locally trained 

models, merge them and re-sends them onto the network. 

 

5.3.1 Execution modes 

This LM has two execution modes: 

 

• node: main modality for the local updating of the shared model on the edge. 

• Server: if instantiated in server mode, the federated learning LM acts as centralized 

server in charge of fusing and distributing trained models. 

5.3.2 Input and output 

The LM expects the data to be formatted as Numpy tensor data of the following format 

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be 

assumed as a sequence learning problem, a sequence classification problem otherwise. 

5.3.3 List of API calls 

Here we list the main API of the LM: 

 

• init(hyper_params) -> State 

• train(input_tensor) -> State 

• eval(input_tensor) -> predicted tensor 

• add_model(trained_model) -> State 

• merge_models() -> State 

• get_merged_model() -> model 

5.3.4 Implementations of the LM 

The implementation of this module is in Tensorflow for the training and eval modality, only 

in eval for the Tensorflow Lite implementation. Both implementations can work on CPU and 

GPUs enabled hardware. 

 

5.4 Continual Learning 

This support learning module provides basic utilities for continual learning that can be used by 

the other learning modules. This module is focused on offering basic replay mechanisms that 

can be used agnostically by almost any other learning algorithm.  
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5.4.1 Execution modes 

This LM has one execution modes: 

 

• External Memory Management: modality to handle an external memory buffer to be 

used for replay. 

5.4.2 Input and output 

The LM expects the data to be formatted as Numpy tensor data of the following format 

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be 

assumed as a sequence learning problem, a sequence classification problem otherwise. 

5.4.3 List of API calls 

Here we list the main API of the LM: 

 

• init(ext_mem_size) -> State 

• update_memory(input_tensor) -> State 

• get_memory_buffer() -> tensor_buffer 

5.4.4 Implementations of the LM 

The implementation of this module is in Tensorflow for the training and eval modality, only 

in eval for the Tensorflow Lite implementation. Both implementations can work on CPU and 

GPUs enabled hardware. 

 

5.5 Privacy-preserving 

Training routines for Privacy-aware Neural Networks. Privacy-aware training algorithms keep 

track of the privacy budget during training and modify the model’s updates to guarantee the 

privacy. 

5.5.1 Execution modes  

This LM has two execution modes: 

 

• Training: private training of a specified architecture given a dataset. 

• Eval: may not be needed if you use other modules at evaluation time.  

5.5.2 Input and output 

The LM expects the data in the same format as Section 5.1. 

 

The LM expects the data to be formatted as Numpy tensor data of the following format 

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be 

assumed as a sequence learning problem, a sequence classification problem otherwise. 

 

The LM outputs the success or error states in the training mode (after each call), while it 

returns also the predicted tensors (batch_size, target_size) for the eval mode. 
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5.5.3 List of API calls 

Here we list the main API of the LM: 

 

• init(n_layers, n_neurons, optimizer_hyperparams) -> State 

same arguments as 4.2, plus privacy-specific hyperaparameters: noise_multiplier, 

l2_norm_clip, microbatches 

 

• train(input_tensor, privacy_budget) -> loss, privacy_budget 

privacy_budget is a tuple <epsilon, delta> corresponding to the model’s DP 

coefficients 

 

• eval(input_tensor) -> predicted tensor 

5.5.4 Implementations of the LM 

The implementation of this module is in Tensorflow for the training modality. Privacy-aware 

training is not supported by Tensorflow lite (possible future work). Eval may be supported also 

for Tensorflow-Lite (and any other architectures supported by the AI Framework). Both 

implementations can work on CPU and GPUs enabled hardware. 

 

5.6 Dependable AI – Adversarial Robustness 

Dependability routine that evaluates the adversarial robustness of a neural network. 

5.6.1 Execution modes  

This LM has one execution modes: 

 

• Eval: given a model a list of samples, find the minimum amount of noise sufficient to 

perturb the network’s output outside the desired bounds. 

5.6.2 Input and output 

The LM expects the data to be formatted as Numpy tensor data of the following format 

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be 

assumed as a sequence learning problem, a sequence classification problem otherwise. 

The LM outputs the minimum perturbation necessary to make predictions outside the given 

bounds. 

5.6.3 List of API calls 

Here we list the main API of the LM: 

 

• init(d1, d2, d3) -> distances of the three boundaries. 

• eval(model, samples) -> minimum perturbation. 
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5.6.4 Implementations of the LM 

The implementation of this module is in Tensorflow and it supports CPU and GPUs enabled 

hardware. 

 

5.7 Hyper-parameters Selection 

The “Hyper-parameters Selection” learning module provides all the utilities to simplify the 

hyper-parameters selection process. In order to automatize “learning” in every TEACHING 

application and provide more transparent API to the end users (i.e. even inexperienced coders), 

being able to automatically determine the more effective set of hyper-parameters becomes 

essential. This module offers a simple way to return the best set of parameters given a specific 

search policy and a set of possible hyperparameters.  

 

Further improvements of this LM may expand current features by providing an even higher-

level API that automatically determines those parameters and the search policy based on the 

specific learning algorithm used and the application context. 

5.7.1 Execution modes  

This module can be used only for training and as a support LM, i.e. it cannot be directly 

instantiated in a routing graph of an application but should be used directly by another learning 

module that exploits its features. 

5.7.2 Input and output 

The inputs to this LM are essentially a tensor “grid” containing the set of the possible 

hyperparameters and a string “policy” with the specific search policy to be used. 

5.7.3 List of API calls 

The list of methods available for this LM are the following: 

• init() -> instance of the LM. 

• get_parameters(grid, policy) -> set of best-performing hyper-parameters. 

5.7.4 Implementations of the LM 

The implementation will be in pure Python, eventually relying on external Python libraries and 

the training utilities provided by the other learning modules. 

 

5.8 Anomaly Detection   

This module provides basic utilities for training a Long Short-Term Memory Autoencoder 

(LSTM-AE) for anomaly detection tasks. The model learns from normal data instances. 

Evaluation or inference is applied on mixed data containing both normal and anomalous 

instances. The module offers access to the underlined trained model functionalities.  
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5.8.1 Execution modes 

This LM has two execution modes: 

 

• Train: modality to train the underlying prediction model. 

• Eval: modality to use the prediction model in inference only.  

5.8.2 Input and output 

The LM expects the data to be formatted as Pandas dataframe: 

 

• Input: a dataframe with normal data of shape (sequence_length, input_features_size, 

target_size) for training, a dataframe with data containing anomalies of shape 

(sequence_length, input_features_size) for evaluation or inference. A config.py file for 

training with a dictionary that contains the following arguments:  

o data.path_normal: the path to a dataframe that only contains normal instances. 

o data.path_anomaly: the path to a dataframe that contains both normal and 

anomalous instances, used in evaluation. 

o data.time_steps: number of timesteps to split the data into subsequences. 

o data.ground_truth_cols: None if target columns are not included in the 

dataframe, otherwise a list with the target’s feature names. 

o train.batch_size: batch size for training. 

o train.epochs: training epochs. 

o train.val_subsplits: percentage of data to use for validation. 

o model.storage: path to store the serialized model. 

 

• Output: 1) Training mode: A serialized model, and a minmax scaler object. 2) Inference 

mode: the initial dataframe with an additional ‘pred’ column with 0 for predicted normal 

and 1 for predicted anomaly.  

5.8.3 List of API calls 

Here we list the main API of the LM: 

 

• init(CFG) -> State (CFG is a configuration dictionary that contains the architecture 

and training parameters) 

• load_data() -> State 

• train() -> State 

• eval() -> predicted tensor 

 

5.8.4 Implementations of the LM 

The implementation of this module is in Tensorflow for the training and eval modality. 

Currently, both implementations work on CPU enabled hardware. 
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5.9 Reinforcement Learning 

In order to train a Reinforcement Learning model, it is first necessary to decide on the algorithm 

to use and then define the input, output, states and rewards for the agent. We decided to use the 

Advantage Actor Critic algorithm (Figure 13), aiming to train an agent that would learn to 

choose the appropriate driving profile, per driver, based on various input collected through the 

Sensor API. The actor critic algorithm consists of two networks (the actor and the critic) 

working together to solve a particular problem. The actor network chooses an action at each 

time step and the critic network evaluates the quality or the Q-value of a given input state. As 

the critic network learns which states are better or worse, the actor uses this information to teach 

the agent to seek out good states and avoid bad states. 

 

The input provided to the RL model at each step is related to the stress level and excitement 

level of the driver, the state of the road (e.g., taken from a camera sensor) and the state of the 

car as given by the accelerometers and other sensors. For the RL model it is also necessary to 

define the set of possible actions and quantify the reward resulting from the action. For this 

purpose, we define three driving profiles (conservative, normal and aggressive) which may 

correspond to different top velocity, acceleration/deceleration and steering limits. We 

consequently assume that the RL chooses the best profile at each moment based on the current 

state of the vehicle and the driver (input). Depending on the status of the driver at the next step 

(i.e., stress and excitement) we compute the reward for the chosen action and proceed to the 

next training iteration. 

 

Our network has two output layers. The first output layer that corresponds to the Actor neural 

network provides three output values (Action) and uses Softmax as its activation function. The 

three values are the probabilities for each possible Action (driving mode) that the model can 

perform. The second output layer that corresponds to the Critic neural network provides an 

output, a Value that is the sum of all expected future rewards. During model training we employ 

the output of the actor model and the action with the highest probability is chosen each time 

(i.e., becomes the suggested Action). The action selected by the actor model was translated by 

the system to a choice of driving profile that is forwarded to the DMU (at inference time). 

 

 

 

Figure 13 A high-level demonstration of the flow of state observations and reward signals between the 

algorithm and the environment in the Actor Critic RL architecture. 

 

At each step, a reward was generated for the action taken (the chosen profile), and this reward 

is computed using a reward function that jointly examines the stress and excitement values of 
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the driver. The aim is to keep driver’s stress at low levels and driver’s excitement at high levels. 

After applying the driving profile, a new package of observations was retrieved from the 

environment, in order to feed the model again, and the same process is repeated continuously.  

In parallel, after each execution step, the observations, actions and rewards are kept in a buffer 

until the requested batch size (500 samples) is covered. The batch is then used for model 

training. The model was built in TensorFlow v2.0 with Keras v2.0. Two loss functions were 

also used, one for each model and another for backpropagation. For the actor's neuron the loss 

function was the product of the logarithm of the probability of the action, which has been 

selected earlier during the data collection stage, times the difference between the total reward 

and the reward of the action. Huber loss was used for the critic's neuron. In backpropagation, 

the sum of the total values of the loss function from each network was used as the loss function. 

Finally, the Adam optimizer was used with a learning rate of 1e-4. The architecture of the 

models used is shown in the diagram below (Figure 14). 

 

 

 

Figure 14 The architecture of the developed RL models. 

 

5.9.1 Execution modes  

• Eval: given a set of parameters expected as an input by the model, predicted the 

appropriate driving profile that fits driver’s state (stress & boredom) and vehicle status. 

5.9.2 Input and output 

The LM expects the data to be formatted as follows: 

 

1. Input: A set of state measurements that comprise vehicle sensor records, as 

well as the estimated user stress and boredom levels. These input parameters include: 

1.1 y_acceleration: The vehicle acceleration on the y-axis 

1.2 gyro_z: The angular velocity on z-axis 

1.3 velocity: Vehicle’s velocity ox x-axis 

1.4 speed_limit: The speed limit as it is defined in the vehicle’s environment (i.e. 

by traffic signs) 

1.5 stress: Driver’s stress as it comes from the stress recognition module 

1.6 boredom: Driver’s estimated boredom based on the current driving style 
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2. Output: The predicted driving mode that best matches the driver’s style as 

predicted based on the above factors. 

 

5.9.3 List of API calls 

Here we list the main API of the LM: 

 

• init(self, inference_mode , num_inputs , num_actions , steps_per_episode , gamma,  

                  num_hidden , learning_rate , max_finish_score) 

• load(pretrained_model_h5_file) 

• save(h5_filename_to_be_saved) 

• eval(model, states) -> preferred driving mode. 

5.9.4 Implementations of the LM 

The implementation of this module is in Tensorflow for the eval modality. The training 

modality has been implemented and tested in simulation environment only (Carla) since the 

sensor infrastructure is not yet fully deployed. Both implementations can work on CPU and 

GPUs enabled hardware. 
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6 AIaaS Integration 

This section is dedicated to illustrating the integration of the AIaaS mockup. In particular, 

Section 6.1 presents the main software organization, Section 6.2 describes the dependencies 

and the mockup integration, Section 6.3 describes some use cases, and finally Section 6.4 two 

demo applications that are fully implemented in Python. We will see how an application 

developer can declare an application that uses the TEACHING AIaaS framework by providing 

a few instructions in a Python file in a fast and simple fashion even to solve complex AI tasks. 

 

The reference coding project for the "Artificial Intelligence as a Service (AIaaS) software 

infrastructure for CPSoS" WP4 of the TEACHING project is the AI-Toolkit11.  The AI-Toolkit 

is a set of code utilities and services at the core of the AIaaS system.  It has been mainly tested, 

installed, and used on macOS, Linux distributions and on Jetson Nano.  

 

6.1 AI-Toolkit Organization 

This subsection is focused on the organization and the structure of the toolkit. The code 

repository is a private GitLab instance for the TEACHING project. GitLab is a web-based 

DevOps lifecycle tool that provides a Git repository manager providing wiki, issue-tracking 

and continuous integration, and deployment pipeline features, using an open-source license, 

developed by GitLab Inc.   

 

The current project structure visible in the GitLab repository is presented below with a brief 

description of each main module: 

 

• teaching: Main AIaaS package with key learning modules and components. The 

structure of this module is the following: 
| teaching 
  |- components 

 |- ai_framework 

 |- application_runtime 

 |- application_translator 

 |- data_brokering 

 |- dmu 

 |- ext_common_interface 

 |- local_storage 

 |- sensor_api 

  |- learning_modules 

 |- continual_learning 

|- cybersecurity 

|- federeted_learning  

|- hyperparams_selection 

|- privacy_preserving  

|- reinforcement_learning  

|- reservoir_computing_esn  

|- rnn  

|- sum  

lm_base.py 

 
11 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/tree/master/#ai-toolkit. The repository is currently private and 

only accessible by the consortium partners. A zip file containing the latest AI-Toolkit software version will be submitted 

together with this document for completeness. 

 

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/tree/master/#ai-toolkit
https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/tree/master/%23ai-toolkit
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• applications: Applications Demo implemented on top of the mockup. Beware that some 

of the logic has been hardwired and implemented independently from the true 

components and learning modules. The structure of this module is: 

 
|- applications 

|- driving-mode-personalization  

|- reinforcement learning  

|- sinwave  

|- stress 

 

• tests: Tests for the integrated mockup and the individual components / learning 

modules. Below its structure: 

 
|- tests 

|- DepUseCase  

|- FederatedLearning-useCase  

|- SequenceClassificationCL  

|- unit_tests  

README.md  

integration.py 

 

• utils: Additional materials not strictly necessary for the current AIaaS Toolkit, but that 

might be useful in the future. Below its structure: 

 
|utils 

|- esn_lite 

|- pseudocode_ideas 

 

 

 

Figure 15 The GitLab AI-Tookit landing page. 

 

6.2 Setup and Mockup Integration Script 

This subsection presents everything we need to use the AI-Toolkit and in particular the mock-

up integration script. The latter is used to check if all dependencies are installed and in general 

if the setup was successful. We can divide the setup into four parts called prerequisites, 
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installation, requirements (or dependencies) and finally the verification via mock-up integration 

script. 

 

Prerequisites – The main requirements for the execution of the integration script are mainly 

two: 

 

• Python: It is recommended that you use Python 3.6 or greater, which can be installed either 

through the Anaconda package manager, Homebrew, or the Python website. 

 

• Package Manager: to install the AI-Toolkit, you will need to use one of two supported 

package managers: Anaconda or pip. The latter is the recommended package manager as 

it will provide you in a fast way AI-Toolkit dependencies in one. For Python3 use pip3.   

 

Installation/Clone Repository - Currently, AI-Toolkit source code can be found in GitLab, 

and it is possible to clone it via SSH12 or HTTP13. 

 

Requirements - Here, pip3 is our recommended package manager since it installs all 

dependencies using the follow command line pip3 install -r requirements.txt 

 

Verification - To ensure that the AI-Toolkit works in your system and the dependencies have 

been installed correctly, it is possible to run the test Python scripts. Such execution represents 

the integrated mockup that can be run on a Jetson Nano and any Linux desktop distribution. 

 

To run the code, launch a test from the project directory in two different terminals that 

simulate two devises: 

 
python3 -m tests.integration     

python3 -m teaching.components.sensors_api.virtual_sensors_publisher 

 

The Integration script tests the proper working of the interfaces among components and 

modules. The virtual_sensors_publisher is a script implementing 5 virtual sensors, 

regularly publishing readings to the MQTT broker. Here sensors are eda (sensors/eda). The 

second script initializes a new application, defines the data sources (sensors/eda), creates local 

storage, defines the lm and routing like below 

 
# Define routing 

app.route([     

(eda, teaching.output, {}),     

(target, lm, {'type': 'label', 'resampling': {'freq': 50, 'buffer_size': 

1000}}),  # 'resampling': Hz, 'buffer_size': ms     

(eda, lm, {'resampling': {'freq': 50, 'buffer_size': 1}}),     

(lm, teaching.output, {})  # Exit point 

]) 

 

The output is simply a continuously updating data of the sensors represented by two plots. 

 

 
12git@teaching-gitlab.di.unipi.it:v.lomonaco/ai-toolkit.git  
13 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit.git). 

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit.git
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6.3 Mockup Use Cases 

In this section, we describe examples of possible use case mockups scenarios that the AIaaS 

system may enable, focusing (among many others) on the following: 

 

• Sequence Classification with Continual Learning (described in Section 6.3.1) 

• Dependability (described in Section 6.3.2) 

• Reinforcement Learning (described in Section 6.3.3) 

• Federated Learning (described in Section 6.3.4). 

 

The examples have been designed to cover as many AIaaS planned functionalities as possible, 

as well as covering the main TEACHING use cases. At this point of the project, they are a 

demonstration of the successful integration of the different AI-Toolkit components, the 

concrete use of the learning module for practical applications and finally some typical 

workflows of a generic applications leveraging the proposed platform. 

 

6.3.1 Sequence Classification with Continual Learning 

The first use case scenario is sequence classification with or without the Continual Learning 

integration, to show the usability of both learning modules in the AIaaS system. 

 

The goal of this use case is to use the  RNN-RC learning module for a stress recognition demo 

application using the Continual Learning support LM for the external memory management, 

i.e. the basic functionalities needed to handle an external memory buffer to be used for 

experience replay, a basic technique to reduce forgetting in neural networks as discussed in 

Section 2.3. However, for the sake of this first mockup implementation, a pretrained ESN is 

used only for inference. Note that the main difference with respect to to the application 

described in Section 6.4.1 is the use of the support CL learning module to enable ESN model 

adaptation on non-stationary data streams.  

 

To run the code, launch SequenceClassificationCL from the project directory in two different 

terminals that simulate two devises. 

 
python3 -m tests. SequenceClassificationCL.scCL     

python3 -m teaching.components.sensors_api.virtual_sensors_publisher 

 

Parts of the code that implements the use case application are shown below. The general schema 

is to initialize a new application and define the data sources, then define the components, create 

local storage and define routing graph as follows: 

 
# Define routing 

app.route([     

(eda, teaching.output, {}),     

(target, lm, {'type': 'label', 'resampling': {'freq': 50, 'buffer_size': 

1000}}),  # 'resampling': Hz, 'buffer_size': ms     

(eda, lm, {'resampling': {'freq': 50, 'buffer_size': 1}}),     

(lm, teaching.output, {})   

# Exit point]) 

 

Here, we have an additional virtual sensor named “target” which emits target labels for the task. 

By annotating the (target)->(lm) edge with type=label, we inform the framework that the data 
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flowing through that edge should be used for supervised learning. Within the function 

tick()in Data Bus module, the framework can have access to the labels. 
 

After the runtime of the application is started by calling 

asyncio.create_task(app.run()), the two results can be obtained by calling 

app.output(). As time goes on, the results are accumulated into buffers which are emptied 

as soon as a new output is requested by calling app.output()as presented in Section 6.4.1.  

 

This use case shows the possibility to run the applications of sequence classification even with 

the presence of the CL module. 

 

6.3.2 Dependability  

The second use case choice is for the dependability scenarios. We decided to use the adversarial 

robustness method and ESN as the neural network model. The purpose of this use-case is to 

show the possibility of using the Dependability LM and pass not only data from the sensors, 

but also NN models by passing them through the data brokering module. 

 

To run the code, launch DepUseCase from the project directory in two different terminals that 

simulate two devises: 

 
python3 -m tests.DepUseCase.dep_pub  pla   

python3 -m tests.DepUseCase.dep_sub 

 

Parts of the code that implements the use case application are shown below. The general schema 

is to initialize a new application, define the component and set some application parameters. 

For the sake of the mockup we limit ourselves to a simpler version of the scenario, in the case 

in which only a new model arrives and its robustness is evaluated. The user can simply execute 

the application using the following code: 

 
if __name__ == "__main__":     

loop = asyncio.get_event_loop()  

result = loop.run_until_complete(main()) 

 

with the main code being: 
 

async def main():     

loop = asyncio.get_event_loop()     

loop.create_task(app.run()) 

 

With this use case demo, we illustrate the possibility to use the Dependability LM and 

evaluate arbitrary NN models such as ESNs. 

 

6.3.3  Reinforcement Learning  

In order to showcase the usability of the Reinforcement Learning LM in the context of the 

AIaaS framework, we implemented a use-case scenario through a demo application that 

demonstrates its usage. In this use case, the goal is to use a pretrained RL model in the inference 

stage, feed the model with a set of 6 sensor measurements from an autonomous vehicle and the 

driver (acceleration on the y axis, gyroscope, velocity, speed limit, excitement level of the 
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driver, electrodermal activity of the driver) and get the most suitable driving profile of the 

autonomous vehicle (cautious, normal, sport) as the predicted output of the model. 

Parts of the code that implements the use case application are shown below. The following code 

block depicts the instantiation on the sensor sources and the routing of these data sources to the 

RL LM. 

y_acceleration = MqttSensorDevice("sensors/carla/acceleration_y") 
app.add_data_source(device=y_acceleration) 
# 
gyro_z = MqttSensorDevice("sensors/carla/gyro_z") 

app.add_data_source(device=gyro_z) 
# 
velocity = MqttSensorDevice("sensors/carla/velocity") 
app.add_data_source(device=velocity) 
# 
speed_limit = MqttSensorDevice("sensors/carla/speed_limit") 
app.add_data_source(device=speed_limit) 
# 
excitement_sensor = ExcitementSensorDevice() 
app.add_data_source(device=excitement_sensor) 
# 

eda = WesadSensorDevice() 
app.add_data_source(device=eda) 

After creating the RL model instance we route the previous sensor sources into the learning 

module and the output of the model to the output of our application. 

rlmodel = RL_Model() 

rlmodel.load(path='data/models/RL_model_episode_470.h5') 

app.add_module('rl', rlmodel) 

 

app.route([ 

    (y_acceleration, rlmodel, {}), 

    (gyro_z, rlmodel, {}), 

    (velocity, rlmodel, {}), 

    (speed_limit, rlmodel, {}), 

    (excitement_sensor, rlmodel, {}), 

    (eda, rlmodel, {}), 

    (rlmodel, teaching.output, {})  # Exit point 

]) 

And finally, we get the predicted driving mode as an output of the application: 

rlmodel_output = await app.output() 

print('RL LM output: Driving mode {}'.format(rlmodel_output[0])) 

This output in this use case scenario is not forwarded to any other module or component since 

this use case only focused on demonstrating the functionality of the RL module but in a more 

complex application, like the one demonstrated in the section that follows (Section 6.4), this 
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output could be routed to another LM, a Decision Making Unit that implements any  application 

specific logic etc. 

 

6.3.4 Federated Learning  

As mentioned in Section 2.2, Federated Learning enables distributed devices to collaboratively 

learn a shared prediction model while keeping all the training data on the device, decoupling 

the ability to do machine learning from the need to store the data in the cloud. TEACHING 

apps using our AIaaS can leverage the Federated Learning LM to implement it in a federation 

of hardware agnostic devices. 

 

To show the use of the Federated Learning LM we developed a simple use case with one 

server and two clients. For simplicity a pre-trained ESN model is used. However, please note 

that the Federated Learning LM is agnostic to the specific ML model used. 

 

 

Figure 16 A graphical view of the Federated Learning Use Case 

A graphic view is shown in Figure 16. The server initializes the global model (1) and passes it 

to clients (2). Every client trains the model with local data (3) and then sends the new local 

model to the server (4). Then the server aggregates the two models (5) and sends the new global 

model.  

 

All this work is transparent to the user in our framework and needs only to initialize a new 

application, define the component, set a model, and add LM to the app object. Please note that 

the user can setup the server node simply as an instance of the AIaaS system, just by instructing 

correctly the Federated Learning module about it specific execution mode (as a server or as a 

worker) as shown below:  

 
"Setting for user" 

app = teaching.init()  

# Init a new application 

app.metadata = True  

# model no data from sensor! 
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app.param['use_case'] = 'fl' 

app.param['device'] = 'nodes' 

# set a NN model and add LM in appesn_ 

pub = ESN(os.path.realpath(os.path.join(__file__, 

'../../../applications/stress/','data/models/esn_stress_recognition.pkl')))

node = NodeFL(esn_pub) 

app.add_module(app.moduleName, node) 

 

The Application module routes the workflow of the user’s application and the Data Brokering 

module manages the communication between the different devices using MQTT protocol 

behind. To run the code, launch a FederatedLearning-useCase code from the project directory 

in three different terminals (two as nodes - with one argument as input n1 or n2 - and one as 

server): 

 
python3 -m tests.FederatedLearning-useCase.fl_nodes n1    

python3 -m tests.FederatedLearning-useCase.fl_nodes n2    

python3 -m tests.FederatedLearning-useCase.fl_server 

 

The FL demo use case demonstrates how simple it is to build real-time AI applications by using 

the AIaaS framework even with complex remote infrastructure and learning approaches. 

 

6.4 Demo Applications 

In this section we describe two applications leveraging the AIaaS framework. The integration 

script is needed to check if the setup was done correctly while the mock-ups highlight the 

possible use-cases and general workflow of an application. Here the focus is on two specific 

uses of the AIaaS system for two demo applications very relevant to TEACHING. Section 6.4.1 

illustrates the stress recognition demo app, while Section 6.4.2 shows the autonomous driving 

personalization module.  

6.4.1 Stress Monitoring  

The stress recognition demo application showcases the ability of the AIaaS framework to easily 

allow the construction of applications by interactions of basic components. 

In the stress recognition demo application, the goal is to recognize the level of stress of a user 

from physiological sensors. For the purposes of this demo, we limit ourselves to the use of an 

electrodermal activity (EDA) sensor for input. The output is simply a continuously updating 

measure of the current level of stress. 

 

The actual data used for the demo does not come from a real EDA sensor. Instead, we have 

used the data included in a publicly available dataset in the literature (WESAD) in order to 

simulate a real-time stream. We refer to the producer of this data as a virtual sensor. 

 

The application uses a pretrained Echo State Network for inference, so the main components 

of the applications are the input sensor (eda) and the Echo State Network (lm). Given these two 

components, the framework allows the definition of a stress recognition application simply by 

declaring a routing graph: 

 

 
app.route([ 

    (eda, teaching.output, {}), 

    (eda, lm, {}), 
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    (lm, teaching.output, {}) 

]) 

 

Each item in the routing list defines an edge in a computational graph. In this case, the data 

emitted by the sensor is fed to the lm (i.e., to the ESN) and to the output of the application 

(teaching.output) for visualization. The output of the ESN is fed directly to the output of 

the application. 

 

After the runtime of the application is started by calling 

asyncio.create_task(app.run()), the two results can be obtained by calling 

app.output(). As time goes on, the results are accumulated into buffers which are emptied 

as soon as a new output is requested by calling app.output(). 

 

The stress recognition demo application demonstrates how simple it is to build real-time AI 

applications by using the AIaaS framework. 

 

6.4.2 Autonomous Driving Personalization 

We decided to use the Reinforcement Learning method with the Advantage Actor Critic 

algorithm, aiming to train an agent that would learn to choose the appropriate driving profile, 

per driver, based on his stress and excitement values. To do this, we used an ANN model to 

simulate the stress and excitement values based on the vehicle condition, and we modified 

CARLA's Behavior Agent. The Behavior Agent has been modified in such a way that 

dynamically during the execution of a route one can change the driving profile between three 

options: conservative, normal and aggressive. 

 

To apply the Reinforcement Learning method to our experiments, we made the necessary 

modifications to CARLA 's execution script. A new script was created, which placed the vehicle 

randomly in CARLA's map and at the same time activated the autopilot giving it a random 

route. The same script repeated the same process each time the experiment was reset. At the 

same time, in order to simulate the different drivers, in each reset of the experiment, the initial 

profile of the Behavior Agent was randomly selected, but at the same time the driver profile 

was related to how anxious and excited he was depending on the condition of the vehicle. This 

way, we were able to give the agent as many new scenarios as possible with different drivers 

and different routes so that he could gain a good experience of the world. 

 

In order to train the RL model for the driving personalisation task, we employed the CARLA 

driving simulator environment (https://carla.org/), which allowed us to instantiate an 

autonomous vehicle that is operated by the CARLA parametric auto-pilot (Figure 17). The 

parametric auto-pilot allows to set the various driving parameters (e.g., maximum speed, 

maximum steering angle, acceleration or deceleration etc) and achieve different driving profiles 

that correspond to different autonomous vehicle driving modes. In addition, we are able to 

simulate several vehicle sensors that measure the speed, acceleration and rotation of the vehicle 

on all axes (which implicitly affects the passengers’ stress), and use them as input to the RL.  

https://carla.org/
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Figure 17 The autonomous vehicle used in the Carla simulator, operated by the parametric auto-pilot that 

was deployed for testing the autonomous driving personalization algorithms and developing the relative 

demo application to showcase the results. 

This way we were able to give the agent as many new scenarios as possible with different guides 

and different routes so that he could gain a good experience of the world. The condition for 

resetting the experiment was to complete a path, fail to complete it, or collect enough data for 

the batch. The sensors selected to be given to the model were the horizontal acceleration y, the 

vertical acceleration x, the angular velocity on the z-axis, the vehicle speed, the speed limit of 

the road moving the vehicle as well as the stress and excitement values. The choice of these 

sensors arose from the experiments of previous chapters and it was decided that they give a 

very good picture of the current state of the world and the respective driver. 

 

During the training phase, 500 observation batches were created. The observations are used to 

calculate loss functions and update weights. Finding the right reward function was a challenge 

since a wrong choice may result in strange model behaviours (e.g., always selecting a profile 

that minimizes stress independently of the excitement or the inverse). Finding the right learning 

rate was also difficult. With each unsuccessful fine-tuning experiment taking 4 to 5 hours and 

the final successful train of the model lasting 24 hours, we finally got a model that switches 

driving profiles during driving taking into account the stress and excitement in tandem. The 

model has been trained on an AMD Ryzen 9 5900X CPU (12 cores) with 32 GB RAM and an 

RTX 3070 OC 8GB graphics card. The most significant delay in the experiments was due to 

the need to make all training epochs in real time with Carla's virtual world, so the training hours 

correspond to real driving hours. In total the model was trained for about 900 episodes and the 

training process was interrupted when it was considered that the model did not improve further. 

The final model chosen is that of 470 episodes. 

 

In order to evaluate our model, we employed the CARLA autopilot as a baseline and the stable 

choice of a driving profile during the whole route. We also compared against a method that 

randomly changes driving profiles during the route. We repeated the experiment for 5 random 

routes and the results show that with the proposed method we had a decrease in stress between 

4 and 15% and an increase between 1 and 15% in excitement. 
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With respect to the above experiments and the framework units as described in Section 3 and 

5, we also developed a TEACHING demo application that demonstrates the integration of 

various parts of the AIaaS platform. For this purpose, the CARLA driving simulation 

environment has been installed and configured in order to allow integration with the 

TEACHING framework. In essence, this application uses the communication among the 

different components to flow the extracted user stress levels coming from the stress recognition 

module to feed the RL module along with various vehicle sensor data to predict the appropriate 

autonomous vehicle driving profile that should be used by the vehicle’s agent for personalizing 

its behaviour based on the user’s predicted profile. In addition to the above, and in order to 

facilitate the demo app implementation and test the whole TEACHING pipeline, the vehicle 

sensors from CARLA have been wrapped up and delivered through a message brokering 

service, a module that simulates user stress and user excitement based on the vehicle behavior 

(speed, acceleration, etc.) has been developed in order to provide input for the RL module and 

allow to train the RL model.  

 

An example of the routing used in this demo application to flow the information among the 

various components and learning modules is given below. 

 
app.route([ 
    (eda, stresslm, {}), 
    (eda, teaching.output, {}), 
    (stresslm, teaching.output, {}), 
    (stresslm, rlmodel, {}), 
    (excitement_sensor, rlmodel, {}), 
    (y_acceleration, teaching.output, {}), 
    (y_acceleration, rlmodel, {}), 
    (gyro_z, rlmodel, {}), 
    (velocity, rlmodel, {}), 
    (speed_limit, rlmodel, {}), 
    (rlmodel, teaching.output, {}) 
]) 

 

 

Based on the output of the RL model that comes from the Teaching output node, we use the 

DMU component to pass the appropriate driving profile change as a command to the 

autonomous vehicle, using the publish_to_topic function of the DMU that publishes the 

command to the same broker topic that the vehicle controller is listening for commands. 

 
def publish_to_topic(self, topic, value): 
        try: 
            ret1 = self.client.publish(topic, value) 
            print(ret1) 
        except Exception as e: 
            raise Exception("Queue {topic} doesn't exist. Get 

getActiveProviderList for a complete list") 

 

A demo video of the application developed that utilizes the Teaching AIaaS Toolkit is available 

online.14 

 

 
14 https://www.youtube.com/watch?v=xcK9E6d7CUM 

https://www.youtube.com/watch?v=xcK9E6d7CUM
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7 Further Preliminary Results 

As a part of the activities of WP4, several lines of scientific investigation focused on relevant 

ML methodologies are currently active, in an exploratory or preliminary phase. The major 

outcomes of this ongoing and preliminary work (spanning all active tasks T4.1, T4.2, T4.3 and 

T4.4) are reported in this section. 

 

More specifically, we show in Section 7.1 how to train ESNs with Tensorflow Lite. In Section 

7.2 we show our preliminary results on Adversarial Robustness of Recurrent Models, a 

fundamental component of our proposal to ensure safety and dependability of recurrent 

networks. In Section 7.3, we show our preliminary results on Anomaly Detection with ESNs, 

which will be fundamental for the anomaly detection in the avionics use case. Finally, we have 

started to experiment with Continual Learning with ESNs. We show our experimental results 

in Section 7.4, specifically for Human State Monitoring tasks. 

 

7.1 Training ESNs with Tensorflow Lite 

Training RNNs “on-the-edge” requires efficient algorithms and lightweight libraries able to run 

on low-powered devices. For this purpose, we explored the use of TensorFlow Lite (TF-LITE), 

a deep learning library designed with efficiency in mind. Unfortunately, TF-LITE does not offer 

support for training natively, and therefore we had to implement the algorithms by ourselves. 

The work done here may be useful in the future to efficiently deploy recurrent models that are 

also trained on the edge. Furthermore, training on-the-edge allows to guarantee the user’s 

privacy since the data never leaves the vehicle. 

 

In these scenarios, we focused on ESNs, due to their efficient training algorithms. The model 

is a basic Keras model, that will be converted into an appropriate format by TF-LITE. To train 

the ESN we evaluated both a ridge regression and a direct solution computed using the 

pseudoinverse. It is important to notice that not all the TensorFlow functions are supported by 

TF-LITE. The basic TF-LITE runtime environment may limit the choice of possible algorithms 

or require to reimplement some functionality if not available. For example, TF-LITE does not 

support sparse linear algebra operations, which would have been useful for our implementation. 

As an alternative, we used the corresponding operations on dense matrices. Similarly, the 

pseudoinverse computation is supported by TensorFlow but not TF-LITE. 

 

7.1.1 Implementation 

The basic idea behind the implementation is that training an ESN is very similar to transfer 

learning, where we keep the feature extractor fixed and only update the final classifier. 

 

 

Figure 18 ESN separated into Base Model and Head 
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As a result, our model is divided into two components: the base model, comprising the input 

layer and recurrent reservoir, and a final head, which performs the classification using the 

reservoir’s features (Figure 18). Notice from the figure that we have two heads, one for training, 

and another for inference. This is necessary because these components are implemented via TF-

LITE Concrete Functions, and because TF-LITE does not allow to update the parameters. 

 

• Inference Head performs the classification by doing a matrix multiplication followed 

by a softmax activation. 

• Training Head is the training algorithm computing the updated parameters. 

 

After the training head computes the updated parameters, the weights can be saved in the disk 

and the concrete function must be initialized again using the updated parameters. Instead, 

during inference the inference head outputs the class probabilities for the input sequences. 

 

In TF-LITE, concrete functions represent a computational graph, similarly to TensorFlow. The 

conversion from a TensorFlow computational graph to a TF-LITE concrete function results in 

a series of optimizations that makes the resulting computation more efficient, for example by 

applying model quantization or fusing operations together. 

 

Additional flags can be activated during the conversion process to enable operations which are 

normally unavailable, such as the matrix inverse that we need to implement the ridge regression. 

After the conversion, the concrete function can be saved and loaded on-device. In our 

experiments, we focus on Python, but it is important to notice that TF-LITE supports many 

other languages. We can load a concrete function using a TF-LITE interpreter, and performs its 

computations by calling the method invoke, using the concrete function and input as arguments. 

 

7.1.2 Results 

We compared the efficiency of TF-LITE against TensorFlow for the base model (ESN 

reservoir), training function (training head) and inference (inference head). We compared the 

CPU time (Table 7), disk space (Table 8), and RAM usage (Table 9). 
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Table 7 Comparison of CPU time of TensorFlow against TF-LITE 

 

Table 8 Disk space of TensorFlow and TF-LITE 

 

Table 9 RAM usage of TensorFlow against TF-LITE 

 
 

Overall, we can see that TF-LITE can be orders of magnitudes better than TensorFlow in terms 

of CPU time and disk space used, making it a very promising solution for on-device training. 

The only disadvantage of TF-LITE is that by default training is not supported. While it is 

possible to train models with TF-LITE, as we showed in these sections, it is more difficult to 

implement than using TensorFlow since the programmer is constrained by the limitations 

imposed by TF-LITE’s environment. 

 

7.2 Preliminary Results on Adversarial Robustness of Recurrent Models 

As we have seen in Section 2.6, the robustness of RNNs is a fundamental property to 

determine their safety and proper measures to guarantee dependability.  

 

To give an example of the quantification of robustness, we provide in this section an 

experimental evaluation of RNNs on WESAD [45], a stress recognition dataset with 

physiological and motion data from the users. We only provide a very preliminary evaluation. 

For these reasons, we did not perform a large scale evaluation of recurrent models, and we use 

hyperparameters which were found optimal from our previous internal experiments. We leave 

a formal experimental evaluation as future work. 

 

Notice that here we do not consider threshold values d1, d2, d3 defined in Section 2.6.1 and 

instead we compute the amount of noise necessary to craft an adversarial example. Finally, 

notice that the robustness value can be hard to interpret by looking at its absolute value. It is 

better instead to compare different models against each other. For example, in our experiment 

the average robustness of the models shows that the most robust model, RNN-64, is also the 

less accurate. 
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Table 10 shows the results for a vanilla RNN with 64, 128, 256 hidden units, respectively. 

Each model is trained to optimize the cross-entropy on the training data, using an Adam  

optimizer for 200 epochs. After each epoch, the current model is evaluated on a validation set,  

and the best model is restored after the training loop is completed. The results in the table are  

computed on a separate test set. After training, we compute the prediction's robustness over a  

set of 50 samples, by finding the amount of noise needed to craft an adversarial example. We  

use POPQORN [37] to compute such values. 

 

 

Table 10 Accuracy and adversarial robustness of RNNs trained on WESAD. 

 

It is worth noticing that we do not consider threshold values 𝑑1, 𝑑2, 𝑑3 defined in Section 2.6. 

Instead, we compute the amount of noise necessary to craft an adversarial example. Finally, 

notice that the robustness value can be hard to interpret by looking at its absolute value. It is 

better instead to compare different models against each other. For example, in our experiment 

the average robustness of the models shows that the most robust model, RNN-64, is also the 

less accurate. 

7.3 Preliminary Results on Anomaly Detection with Echo State Networks 

Due to the complexity of avionics systems, and the complexity of their protocols, modern 

monitoring systems needs to be constantly aware of the current state of the system, and actively 

catch any eventual anomaly. The available sensors can be used to collect useful data, both for 

normal and anomalous situations. These data can be studied to classify anomalous behaviour 

in the future as soon as it occurs, to avoid disasters. As a preliminary study, we decided to 

evaluation RNNs and ESNs on anomaly detection on time series datasets. 

 

We used telemetry data from the Soil Moisture Active Passive (SMAP) satellite, and from the 

Curiosity rover on Mars (MSL). Data have been anonymized, separated into train and test set, 

and normalized between -1 and +1. The data are separated into multiple channels. Notice that 

the data has been collected during real accidents, and the label have been created by domain 

experts. 

 

Currently, we are still working on the experimental phase. Preliminary results are promising 

and show that both LSTMs and ESNs are able to detect anomalous situations. We show the 

ROC curves for LSTMs (Figure 19) and ESNs (Figure 20). Table 11 summarizes the results. 

Unfortunately, we still do not have access to anomalies from the avionics use case, therefore 

we had to resort to datasets from the literature. We will perform an experimental evaluation on 

avionics data whenever such data becomes available. 
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Figure 19 ROC curves LSTMs. 

 

Figure 20 ROC curves ESNs. 

 

Table 11 Results on anomaly detection datasets. 

 

7.4 Continual Learning with Echo State Networks 

As we have discussed in Section 2.3, learning from a stream of data without forgetting previous 

knowledge is one of the key challenges in continual learning. However, the use of RNNs 

introduces additional issues with respect to common feedforward models, since large input 

sequence lengths reduce the ability of existing continual learning strategies to mitigate 

forgetting.  
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We believe that recurrent models like ESNs can be effectively leveraged to mitigate 

catastrophic forgetting. The fact that ESNs have an untrained recurrent component can benefit 

the continual learning performance in several ways: first, forgetting cannot originate from 

parameters that do not change (they are completely stable). Therefore, continual learning 

strategies do not need to consider them. Second, since training by backpropagation does not 

require to compute the gradients of recurrent parameters across all input time-steps, ESNs 

should be able to mitigate the negative effect of large input sequence lengths described above. 

Third, the fixed ESN component (called reservoir) can be leveraged as a pretrained network. 

This is a widely used solution in continual learning for computer vision applications, where 

there is a large availability of pre-trained models. Therefore, ESNs allow to effectively exploit 

such strategies. 

7.4.1 Results 

In [46] we studied the aforementioned aspects with experiments on two continual learning 

benchmarks. In particular, we evaluated the performance of ESNs in terms of catastrophic 

forgetting on two class-incremental continual learning benchmarks: Split MNIST and Synthetic 

Speech Commands. The former is a benchmark composed of 5 tasks, each of which takes 

images from 2 classes of MNIST. Images are taken one row at a time, producing sequences of 

28 time-steps. The latter is a benchmark with 10 tasks, each of which presents audio samples 

representing 2 different spoken words. Each sequence has 101 time-steps. At the end of training 

on all tasks, we evaluated the model average accuracy across a separate test set of all tasks. 

We employed four popular continual learning strategies not specifically designed for recurrent 

models: EWC, LWF, Replay and SLDA. We also reported the performance for Naive 

finetuning (training without any continual learning technique) and Joint Training (training on 

all data at once). They can be considered respectively as a lower and upper bound on the 

continual learning performance. 

 

Table 12 Average Accuracy across all tasks for ESN and LSTM with popular continual learning 

strategies. Taken from [46]. 

 
 

The results in Table 12 showed that ESNs behave similar to LSTM networks when trained 

together with popular continual learning strategies. Replay is the only strategy for which LSTM 

outperforms ESN. However, additional studies (not yet published) confirmed that ESNs with 

output feedback connections are able to close the performance gap for replay strategies.  

The performance of Deep SLDA is promising on both benchmarks: this is a crucial aspect of 

the study since SLDA can only be applied in the presence of a fixed feature extractor. Since 

there is no availability of pretrained LSTM models, ESNs is the only choice to leverage SLDA 

on these benchmarks. 
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7.4.2 Discussion 

By studying and developing recurrent models able to learn continuously, it will be possible to 

tackle many continual learning applications which currently lack a working solution: from stock 

prediction to human activity recognition, the need of recurrent models in dynamic environments 

is widespread. Additionally, training on the edge will be a key enabler for continual learning, 

since sending data to a centralized data center requires time and is not always possible (data 

privacy issues). ESNs promise to combine these two aspects: an efficient, on-device 

implementation (e.g. through neuromorphic hardware) able to be trained on the edge with fast 

and efficient continual learning strategies that only have to deal with a linear classifier, instead 

of a complex recurrent architecture. 

7.5 Continual Learning for Human State Monitoring 

Having robust Continual Learning algorithms for Human State Monitoring data is critical for 

real applications. By comparing neural networks trained with continual learning methods to a 

neural network trained via a classic offline training we can figure out how different the final 

inference results will be using the continual learning methods. We have selected 6 simple 

continual learning methods and compared the results to the offline training. The selected 

methods are the following: 

 

1. Naive continual learning, where the data is passed to the training of the neural network 

without further actions 

2. Replay, where we keep a percentage of the training data to use as a replay data in the next 

training session 

3. Cumulative, a replay method with a percentage of 100%: we bring all the training data to 

the next training session 

4. Episodic, in which we keep a fixed number of examples per class and bring them to the 

next training session 

5. Learning Without Forgetting, per the homonym paper [47]. 

6. Elastic Weight Consolidation, following the introductory paper [48]. 

 

The comparisons were done with data from two popular Human State Monitoring datasets: 

WESAD and ASCERTAIN. The first one, WESAD, contains data from 15 subjects gathered 

in a laboratory experiment regarding stress levels: the data were recorded by two devices, one 

on the wrist and one on the chest, that recorded levels of respiration, body temperature, ECG 

and more. The second dataset, ASCERTAIN, is very similar, with data from 58 subjects 

gathered with commercial devices that recorded respiration, skin galvanic responses, ECG and 

more. 

 

We compared the various methods by measuring the number of epochs needed for training, the 

time it required, the average accuracy over the training sessions, the final accuracy, forward 

and backward knowledge transfer and the memory used during the process. 

 

The results (Table 13 and Table 14) show how the data really affects the results of the model. 

Over WESAD, with a neural network of two GRU layers of 18 units, we got a 99% accuracy 

with the offline training, and an accuracy above 70% with each of the continual methods with 

the best performance obtained by the cumulative method which got a final accuracy of 96%. 

ASCERTAIN showed up to be more of a challenge, with the offline training on a neural 

network of two GRU layers of 24 units obtaining an accuracy of 42.78% and each continual 
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learning method staying between 35% and 40%. This proves once again how the continual 

learning methods are comparable to the offline learning. 

 

Table 13 Results over WESAD 

Scenario Epochs Time Accuracy ACC BWT FWT Memory 
Offline 28 94,69s 99,07 - - - 2061,40 Mb 

Continual 49,14±33,67 947,24s 73,13±4,02 0,7721 0,0343 0,5397 2173 Mb 

Cumulative 39,71±19,91 2786s 81,97±8,67 0,961 0,1383 0,4674 2291,45 Mb 

Replay 41,14±21,19 1063,51s 78,29±3,32 0,7849 -0,002 0,4582 2184,77 Mb 

Episodic 35±26,26 1088,29s 82,13±6,60 0,9095 0,0841 0,4226 2097,47 Mb 

EWC 29,71±17,38 1342,81s 70,74±4,74 0,7251 0,0113 0,4698 2187,40 Mb 

LWF 44,29±18,30 3282,51s 69,09±5,82 0,7419 0,0451 0,3248 2121,31 Mb 

 

Table 14 Results over ASCERTAIN 

Scenario Epochs Time Accuracy ACC BWT FWT Memory 
Offline 3 29,14s 42,78 - - - 1817,28 Mb 

Continual 10,88±5,01 249,28s 37,45±5,01 0,25 -0,0168 0,0213 2154,36Mb 

Cumulative 9,25±6,81 932,56s 39,06±4,26 0,2697 0,0064 0,0278 2297,17 Mb 
Replay 13,25±10,03 402,96s 39,48±4,37 0,2603 -0,014 0,0485 2173,95 Mb 
Episodic 12,62±7,94 498,24s 38,80±4,04 0,2742 0,0048 0,0156 2231,42 Mb 
EWC 24,14±16,94 810,96s 36,08±5,66 0,2497 -0,0183 -0,0003 2171,62 Mb 
LWF 21,62±10,20 879,68s 35,69±5,43 0,2448 0,0327 0,0156 2103 Mb 
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8 Conclusion  

WP4 has the role of designing the necessary methodologies and software for creating the 

TEACHING AI as a Service (AIaaS) system. Currently, all the four tasks of the WP are active.  

 

In this document we have provided a report on the integrated mockup of the AIaaS, providing 

an overview of the refined architectural design, as well as a detailed description of the platform 

components and of the identified learning modules. Moreover, we have illustrated the 

integration process, giving an in-depth description of the integration scripts and demos. We also 

updated the state-of-the-art analysis and gave preliminary results on on-going AI-related 

research work. Together with the other deliverables delivered at M20, this document 

contributes to the fulfillment of the project’s Milestone MS2 (First integrated setup with mock-

up of the TEACHING platform). 

 

Following the envisaged project’s lifecycle, the outcomes of the work conducted in WP4 and 

described in this document, along with that of the other technical WPs, will be important to 

complete the core technological building (Phase 2 of the project), following a continuous 

process of integration with progressively more advanced functionalities (towards Milestone 

MS4), and to drive the efforts in the use case integration and validation (Phase 3 of the project, 

towards Deliverable D4.3 and Milestones MS5-6).  
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