

Horizon 2020 Program (2014-

2020)

A computing toolkit for building efficient autonomous

applications leveraging humanistic intelligence

(TEACHING)

D4.2: Report on integrated mockup of the AIaaS system†

Contractual Date of Delivery 31/08/2021

Actual Date of Delivery 20/09/2021

Deliverable Security Class Public

Editor Claudio Gallicchio (UNIPI)

Contributors UNIPI: Vincenzo Lomonaco, Daniele Di

Sarli, Antonio Carta, Rudy Semola, Andrea

Cossu, Giacomo Carfì, Lorenzo Massagli,
Federico Matteoni, Claudio Gallicchio
HUA: Christos Sardianos, Iraklis Varlamis,

Konstantinos Tserpes, Dimitrios Michail,

Charalampos Davalas

M: Salvatore Petroni

CNR: Massimo Coppola, Pietro Cassarà

ITML: Mina Marmpena

Quality Assurance Reviewer Jürgen Dobaj (TUG)

† The research leading to these results has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 871385.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 2 - September, 2021

The TEACHING Consortium

University of Pisa (UNIPI) Coordinator Italy

Harokopio University of Athens (HUA) Principal Contractor Greece

Consiglio Nazionale delle Ricerche

(CNR)
Principal Contractor Italy

Graz University of Technology (TUG)

Principal Contractor

Austria

AVL List GmbH

Principal Contractor

Austria

Marelli Europe S.p.A.

Principal Contractor

Italy

Ideas & Motion

Principal Contractor

Italy

Thales Research & Technology

Principal Contractor France

Information Technology for Market Leadership

Principal Contractor Greece

Infineon Technologies AG

Principal Contractor Germany

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 3 - September, 2021

Document Revisions & Quality Assurance

Internal Reviewers

Jürgen Dobaj (TUG)

Revisions

Version Date By Overview

1.0 20/09/2021 Claudio Gallicchio (UNIPI),

Vincenzo Lomonaco (UNIPI),

Antonio Carta (UNIPI),

Christos Sardianos (HUA),

Iraklis Varlamis (HUA)

Final, including Executive

Summary, Introduction and

Conclusions. Addressed

comments.

0.9 14/09/2021 Jürgen Dobaj (TUG) Comments on Draft

0.8 10/09/2021 Claudio Gallicchio (UNIPI) Outline of Executive

summary

0.7 03/09/2021 Vincenzo Lomonaco (UNIPI),

Antonio Carta (UNIPI),

Salvatore Petroni (M), Massimo

Coppola (CNR)

Edits across Sections 2-7

0.6 31/08/2021 Claudio Gallicchio (UNIPI) Comments to the second

draft

0.5 30/08/2021 Salvatore Petroni (M),

Vincenzo Lomonaco (UNIPI),

Andrea Cossu (UNIPI),

Federico Matteoni (UNIPI),

Antonio Carta (UNIPI), Daniele

Di Sarli (UNIPI), Lorenzo

Massagli (UNIPI), Giacomo

Carfì (UNIPI), Christos

Sardianos (HUA), Iraklis

Varlamis (HUA), Mina

Marmpena (ITML), Massimo

Coppola (CNR), Pietro Cassarà

(CNR)

Second draft

0.4 23/08/2021 Claudio Gallicchio (UNIPI) Comments to the first draft

0.3 06/08/2021 Salvatore Petroni (M),Vincenzo

Lomonaco (UNIPI), Antonio

Carta (UNIPI), Christos

Sardianos (HUA), Iraklis

Varlamis (HUA), Mina

Marmpena (ITML)

First draft.

0.2 20/07/2021 Salvatore Petroni (M),

Vincenzo Lomonaco (UNIPI),

Mina Marmpena (ITML),

Claudio Gallicchio (UNIPI)

Outline of the document

0.1 07/07/2021 Claudio Gallicchio (UNIPI) ToC.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 4 - September, 2021

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

LIST OF ABBREVIATIONS .. 8

EXECUTIVE SUMMARY .. 9

1 INTRODUCTION... 10
1.1 RELATIONSHIP WITH OTHER DELIVERABLES .. 11

2 UPDATED STATE-OF-THE-ART ANALYSIS ... 13
2.1 RECURRENT AND RESERVOIR COMPUTING NEURAL NETWORKS ... 13
2.2 FEDERATED LEARNING .. 15
2.3 CONTINUAL LEARNING .. 17
2.4 REINFORCEMENT LEARNING .. 18
2.5 PRIVACY-PRESERVING LEARNING .. 20
2.6 DEPENDABLE AND SAFE AI.. 20

2.6.1 Determination of RNN Adversarial Robustness by Inputs Perturbation .. 21
2.6.2 Design of Safety Measures for Plausibility Checks .. 23
2.6.3 Safety Validation: Determination of SPIs and Test Length .. 24

2.7 ANOMALY DETECTION ... 25

3 AIAAS ARCHITECTURE .. 28
3.1 RATIONALE .. 28
3.2 HIGH-LEVEL REQUIREMENTS ... 29
3.3 OVERVIEW ... 30

3.3.1 Architecture Overview .. 30
3.3.2 Prototype Architecture ... 32
3.3.3 Application Description.. 33
3.3.4 Data Routing Definition in the M18 Prototype .. 33

3.4 DATA AND METADATA FORMATS .. 34
3.4.1 Data format and message structure outside the AI framework .. 35
3.4.2 Internal data Format for the AI framework / AI data bus .. 35

4 AIAAS PLATFORM COMPONENTS... 37
4.1 AI FRAMEWORK ... 37
4.2 APPLICATION RUNTIME ... 38

4.2.1 Application Runtime Implementation ... 39
4.2.2 Data Flow and Activity Scheduling in the M18 Prototype ... 40

4.3 APPLICATION TRANSLATOR ... 40
4.4 DATA INGESTION / BROKERING ... 41

4.4.1 Data Brokering Implementation ... 41
4.5 EXTERNAL COMMUNICATION INTERFACE .. 42

4.5.1 External Communication Interface Implementation .. 44
4.6 SENSORS API ... 44
4.7 LOCAL STORAGE API... 45
4.8 DECISION MANAGEMENT UNIT .. 46

5 AIAAS LEARNING MODULES .. 47
5.1 TIME-SERIES RNN ... 48

5.1.1 Execution modes ... 49
5.1.2 Input and output ... 49
5.1.3 List of API calls .. 49
5.1.4 Implementations of the LM ... 49

5.2 TIME-SERIES RC-ESN .. 49
5.2.1 Execution modes ... 49
5.2.2 Hyperparameters .. 49
5.2.3 Input and output ... 50
5.2.4 List of API calls .. 50
5.2.5 Implementations of the LM ... 50

5.3 FEDERATED LEARNING .. 51
5.3.1 Execution modes ... 51
5.3.2 Input and output ... 51

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 5 - September, 2021

5.3.3 List of API calls .. 51
5.3.4 Implementations of the LM ... 51

5.4 CONTINUAL LEARNING .. 51
5.4.1 Execution modes ... 52
5.4.2 Input and output ... 52
5.4.3 List of API calls .. 52
5.4.4 Implementations of the LM ... 52

5.5 PRIVACY-PRESERVING ... 52
5.5.1 Execution modes ... 52
5.5.2 Input and output ... 52
5.5.3 List of API calls .. 53
5.5.4 Implementations of the LM ... 53

5.6 DEPENDABLE AI – ADVERSARIAL ROBUSTNESS .. 53
5.6.1 Execution modes ... 53
5.6.2 Input and output ... 53
5.6.3 List of API calls .. 53
5.6.4 Implementations of the LM ... 54

5.7 HYPER-PARAMETERS SELECTION ... 54
5.7.1 Execution modes ... 54
5.7.2 Input and output ... 54
5.7.3 List of API calls .. 54

The list of methods available for this LM are the following: ... 54
5.7.4 Implementations of the LM ... 54

5.8 ANOMALY DETECTION ... 54
5.8.1 Execution modes ... 55
5.8.2 Input and output ... 55
5.8.3 List of API calls .. 55
5.8.4 Implementations of the LM ... 55

5.9 REINFORCEMENT LEARNING .. 56
5.9.1 Execution modes ... 57
5.9.2 Input and output ... 57
5.9.3 List of API calls .. 58
5.9.4 Implementations of the LM ... 58

6 AIAAS INTEGRATION .. 59
6.1 AI-TOOLKIT ORGANIZATION ... 59
6.2 SETUP AND MOCKUP INTEGRATION SCRIPT ... 60
6.3 MOCKUP USE CASES .. 62

6.3.1 Sequence Classification with Continual Learning ... 62
6.3.2 Dependability ... 63
6.3.3 Reinforcement Learning ... 63
6.3.4 Federated Learning .. 65

6.4 DEMO APPLICATIONS ... 66
6.4.1 Stress Monitoring ... 66
6.4.2 Autonomous Driving Personalization .. 67

7 FURTHER PRELIMINARY RESULTS .. 70
7.1 TRAINING ESNS WITH TENSORFLOW LITE ... 70

7.1.1 Implementation ... 70
7.1.2 Results... 71

7.2 PRELIMINARY RESULTS ON ADVERSARIAL ROBUSTNESS OF RECURRENT MODELS 72
7.3 PRELIMINARY RESULTS ON ANOMALY DETECTION WITH ECHO STATE NETWORKS 73
7.4 CONTINUAL LEARNING WITH ECHO STATE NETWORKS ... 74

7.4.1 Results... 75
7.4.2 Discussion... 76

7.5 CONTINUAL LEARNING FOR HUMAN STATE MONITORING .. 76

8 CONCLUSION ... 78

9 BIBLIOGRAPHY ... 79

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 6 - September, 2021

List of Tables

Table 1 Deliverable grouping for verification of TEACHING Milestone 2 .. 11
Table 2 Average accuracy and standard deviation on the test set. The averages and standard deviations

are computed by retraining the models 5 times, each with a different random initialization of the

weights. Reported from [9]. ... 14
Table 3 NMSE (the lower the better) on the test set of classical RC benchmark datasets achieved by

ESN, SCR and PTA. Best results arehighlighted in boldfont. Reported from [13]. 15
Table 4 Training and Test accuracy on WESAD, achieved by Centralized model, Federated Averaging

(FedAvg) and Incremental Federated (IncFed) Learning. Taken from [17], to which the reader is

referred for full details. .. 17
Table 5 Training and Test accuracy on HAR, achieved by Centralized model, Federated Averaging

(FedAvg) and Incremental Federated (IncFed) Learning. Taken from [17], to which the reader is

referred for full details. .. 17
Table 6 Table of Learning Modules available in the AIaaS .. 47
Table 7 Comparison of CPU time of TensorFlow against TF-LITE ... 72
Table 8 Disk space of TensorFlow and TF-LITE .. 72
Table 9 RAM usage of TensorFlow against TF-LITE ... 72
Table 10 Accuracy and adversarial robustness of RNNs trained on WESAD. 73
Table 11 Results on anomaly detection datasets. ... 74
Table 12 Average Accuracy across all tasks for ESN and LSTM with popular continual learning

strategies. Taken from [46]. ... 75
Table 13 Results over WESAD.. 77
Table 14 Results over ASCERTAIN ... 77

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 7 - September, 2021

List of Figures

Figure 1 Depiction of the IIRA Viewpoints from and mapping of TEACHING Deliverables focuses. 12
Figure 2 Federated Averaging Scheme. Each client c sends the local matrix Wc to the server. After the

aggregation of the models is performed in the form of a weighted average, the server sends back the

same matrix W to all clients. Taken from [17], to which the reader is referred for all details. 15
Figure 3 Incremental Federated Learning scheme. Each client sends the local matrices Ac and Bc to

the server. After the matrices are aggregated and multiplied by the optimal readout weights, the server

transmits W back to all clients. Taken from [17], to which the reader is referred for all details. 16
Figure 4 The basic idea and elements involved in a reinforcement learning model. 19
Figure 5 Sample 𝑿𝟎 and perturbed sample 𝑿𝟎′ at a distance Δ. .. 22
Figure 6 Input space around 𝑿𝟎 providing a correct prediction with a determined accuracy. 22
Figure 7 Input samples with distance 𝒅 ≤ 𝒅𝟏, 𝒅𝟏 < 𝒅 ≤ 𝒅𝟐 and 𝒅𝟐 < 𝒅 ≤ 𝒅𝟑 from 𝑿𝟎

belonging respectively to spaces: red, blue and grey. .. 23
Figure 8 The comparison system performs the plausibility check among the RNN output and the

output of one or more redundant systems and makes a decision. .. 24
Figure 9 AIaaS SW Architecture Diagram, current design.. 31
Figure 10 AIaaS SW Architecture Diagram, M18 Prototype .. 32
Figure 11 Overall PUB/SUB Communication Organization spanning WP2 and WP4 (from D2.2) 44
Figure 12 Sensors API in the AIaaS system. ... 45
Figure 13 A high-level demonstration of the flow of state observations and reward signals between the

algorithm and the environment in the Actor Critic RL architecture. ... 56
Figure 14 The architecture of the developed RL models. .. 57
Figure 15 The GitLab AI-Tookit landing page. ... 60
Figure 16 A graphical view of the Federated Learning Use Case ... 65
Figure 17 The autonomous vehicle used in the Carla simulator, operated by the parametric auto-pilot

that was deployed for testing the autonomous driving personalization algorithms and developing the

relative demo application to showcase the results. .. 68
Figure 18 ESN separated into Base Model and Head .. 70
Figure 19 ROC curves LSTMs. ... 74
Figure 20 ROC curves ESNs.. 74

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 8 - September, 2021

List of Abbreviations

AIaaS Artifical Intelligence as a Service

AR Application Runtime

CL Continual Learning

CNN Convolutional Neural Network

CPSoS Cyber-Physical Systems of Systems

DL Deep Learning

DMU Decision Making Unit

EC European Commission

ER Emotion Recognition

ECG Electrocardiography

EDA Electrodermal Activity

ESN Echo State Network

GRU Gated Recurrent Unit

HAR Human Activity Recognition

HSM Human State Monitoring

HR Heart Rate

IoT Internet of Things

LM Learning Module

LSTM Long Short-Term Memory

LSTM-AE Long Short-Term Memory Autoencoder

ML Machine Learning

NN Neural Network

RC Reservoir Computing

RNN Recurrent Neural Network

TF-LITE TensorFlow Lite

WP Work Package

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 9 - September, 2021

Executive Summary

The Deliverable D4.2, entitled “Report on integrated mockup of the AIaaS system”, provides

the first integrated mockup of the Artificial Intelligence as a Service (AIaaS) system, developed

as part of the activities of TEACHING WP4. In particular, the deliverable includes the software

demonstrator (AI-toolkit), which is made available through the TEACHING GitLab

repository1, and the corresponding report, which is given in this document.

The major goal of this document is to describe the AIaaS software toolkit, illustrating its

updated architecture, the organization and API of the different software modules, as well as the

integration mockup scripts and demos. Besides, to properly frame the content of this document

within the scientific and methodological advancements carried out by WP4, we also give an

update on the state-of-the-art and an overview of new preliminary results on relevant Artificial

Intelligence methodologies.

This report is structured as follows. In Section 1 we introduce the scopes of this document and

the relations with the other deliverables delivered at M20. Then, in Section 2 we present an

updated state-of-the-art analysis that focuses on advancements in the core AI-based

methodologies of interest. In Section 3 we present the architecture of the AIaaS system, while

in Sections 4 and 5, we go in depth into the description of its fundamental pieces of software,

respectively the platform components and the learning modules. Then, in Section 6 we describe

the AIaaS mockup integration, showing how to proceed for the setup and the execution of the

integration scripts. In the same section, we showcase several mockup use cases and describe

two demo applications, which intend to demonstrate the potentiality of the developed system.

In Section 7 we illustrate preliminary results on several research lines in AI which will be

relevant for the further developments of the AIaaS during the rest of Y2 and in Y3. Finally,

Section 8 concludes the document.

1 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 10 - September, 2021

1 Introduction

The fundamental goal of the work performed in WP4 is to develop a distributed AI as a Service

(AIaaS) software toolkit that enables human-driven adaptive applications in Cyber-Physical

Systems of Systems (CPSoS).

The work is organized and performed in four tasks, whose description is briefly recalled below,

including information from project replanning (in agreement with what reported in D7.2).

Task T4.1 “AI as a Service” is responsible for the development of the core methodological

components of the TEACHING AIaaS, as well as of the design, implementation and integration

of the software toolkit. The task started at M1, and it was planned to last until M30. After project

replanning, the activities within T4.1 have been extended to last until M36.

Task T4.2 “AI for human monitoring” leverages the work in T4.1 to develop AI

methodologies that are suitable for the recognition and characterization of the human state

(physiological, emotional and cognitive) from streams of sensors’ gathered information.

Task T4.3 “AI models for human-centric personalization” is responsible for the development

of the self-adaptation and personalization functionalities of the AI modules in the AIaaS system,

leveraging the human state information gathered from T4.2.

For both T4.2 and T4.3, the activities started at M7. While the original plan was for a duration

until M36, after replanning both the tasks have been extended until M42. Moreover, their scopes

have been extended to cope with anomaly detection towards avionics applications.

Task T4.4 “Privacy-aware AI models” focuses on the development of privacy-preserving

methods to be bundled in the AIaaS system. The activities in this task were planned to start at

M12 and end at M30. After replanning, for the task it is decided to have a duration from M15

until M42. In addition to that, the scope of the task has been extended to deal also with the

relevant aspects of Dependable and Safe AI.

While the previous deliverable D4.1 was mostly dedicated to the preliminary design of the

AIaaS system (Phase 1 of the project), this deliverable is intended to report the work performed

during the first part of the core technology building activities (Phase 2 of the project). As such,

the goals of this deliverable are the following:

• Provide an in-depth description of the refined architectural design of the AIaaS system;

• Illustrate the elementary software bricks of the AIaaS software toolkit, i.e., its platform

components and its learning modules;

• Describe the AI-toolkit software repository, providing detailed information on the

mockup integration and demo execution.

Moreover, with the idea of keeping the report on the scientific work carried out in WP4 up-to-

date, D4.2 also includes an update on the relevant state-of-the-art and an overview of recent

preliminary results.

The rest of this deliverable is structured as follows. In Section 2 we give an updated survey on

the state-of-the-art in several AI-related methodologies of interest. Specifically, we give

updates on the topics of Recurrent and Reservoir Computing (RC) Neural Networks, which

have been previously identified (see Deliverable D4.1, Section 2) as fundamental AI building

blocks for processing sequential forms of sensor-gathered data. This is complemented by

advances in Federated, Continual and Reinforcement Learning methodologies, which are

crucial to the development of the distributed AI learning services. The section also includes

relevant information on privacy-preserving and anomaly detection AI algorithms. Moreover, in

light of the great relevance played by the aspects of dependability and safety in relation to the

introduction of AI methodologies within safety critical applications, we dedicate some space to

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 11 - September, 2021

a summary of the literature in the field, sketching also the basic elements of a proposed

methodology for safety compliance of Recurrent Neural Networks.

The updated state-of-the-art is followed, in Section 3, by the description of the refined AIaaS

architecture, where we give an overview of the system (refreshing the rationale and the high-

level requirements), as well as details on the formats adopted for data and metadata. In this

section we also introduce the fundamental building blocks of the AIaaS architecture, namely

the Platform Components and the Learning Modules, whose operation is reported in depth in

Section 4 and Section 5, respectively. In Section 6, we report on the process of integration of

the AIaaS mockup, introducing the software repository, the mockup setup and integration

scripts, several use cases (covering the topics of sequence classification with Continual

Learning, Dependability, Reinforcement and Federated Learning), as well as two demo

applications for stress monitoring and autonomous driving personalization. After that, in

Section 7 we intend to give the sense of the on-going scientific work in this WP, illustrating a

number of preliminary results on fast learning in edge devices using TensorFlow-lite,

adversarial robustness for sequence learning models, anomaly detection and Continual

Learning (CL) with RC, as well as CL for Human State Monitoring. Finally, we draw our

conclusions in Section 8.

Before that, in Section 1.1 we shortly recall the relations with the other deliverables.

1.1 Relationship with other deliverables

In compliance with its intended purpose within the scopes of the TEACHING project, this

document (D4.2) describes the integrated mockup of the TEACHING AIaaS system.

D4.2 builds upon the previous WP4 deliverable D4.1, where we gave a preliminary version of

the AIaaS design, which is now refined and complemented by a first description of the AIaaS

mockup software components and of the mockup integration. At the same time, in D4.2 we

provide an upgraded state-of-the-art analysis on relevant AI methodologies, and an overview

of preliminary results on ongoing research.

This document is delivered within a group of related project deliverables, namely D1.2, D2.2,

D3.2, D4.2, and D5.2 (listed in Table 1), all of which serve as a mean of verification for

milestone MS2, entitled First integrated setup with mock-up of the TEACHING platform.

Table 1 Deliverable grouping for verification of TEACHING Milestone 2

D1.2 TEACHING CPSoS architecture and specifications

D2.2 Refined requirement specifications and preliminary release of the computing and

communication platform

D3.2 Interim Report on Engineering Methods and Architecture Patterns of Dependable

CPSoS

D4.2 Report on integrated mockup of the AIaaS system

D5.2 Preliminary use case deployment, implementation and integration report with

related dataset release

The AIaaS system described in this document (D4.2) is framed within the context of the

TEACHING CPSoS architectural concepts illustrated in D1.2, and relies on the High-

Performance Computing and Communication Infrastructure (HPC2I), whose updated

description is given in D2.2. Aspects related to dependable and safe AI are informed by the

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 12 - September, 2021

work described in D3.2. Finally, the related body of work on use case deployment,

implementation and integration is reported in D5.2.

The mapping of the viewpoints of the different WPs and related deliverables is depicted in

Figure 1.

Figure 1 Depiction of the IIRA Viewpoints from2 and mapping of TEACHING Deliverables focuses.

2 https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/

D5.2

D3.2

D1.2

 D2.2

D4.2

https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 13 - September, 2021

2 Updated State-of-the-art Analysis

This section aims at giving a refresher on the state-of-the-art methodologies that are of interest

for the developments reported in this deliverable, touching a number of diverse topics. Notice

that, to avoid cluttering and repetitions, whenever the fundamental literature on a topic has been

already given in D4.1, here we focus on describing the advancements that resulted from the

work within this work package.

Section 2.1 describes the recent advancements on Recurrent and RC neural networks, while

Sections 2.2 and 2.3 give updates, respectively, on the fields of Federated Learning and

Continual Learning. Section 2.4 introduces the fundamental concepts of Reinforcement

Learning which are of interest and constitutes the basics for the human-centric personalization

in autonomous vehicles applications. Section 2.5 introduces the basics of privacy-preserving

approaches in ML. Section 2.6 dives into the topic of Dependability and Safety in AI

applications for autonomous vehicles, also sketching the fundamental concepts of a proposed

methodology for Functional Safety compliance of RNNs. Finally, Section 2.7 discusses the

relevant state-of-the-art in the field of Anomaly Detection.

2.1 Recurrent and Reservoir Computing Neural Networks

The class of Recurrent Neural Networks (RNNs) [1] gives a flexible paradigm for learning with

sequential forms of data. The key concept is that the neural network architecture includes a

recurrent hidden layer that develops a contextual representation of the driving (possibly multi-

dimensional) input signal. In this context, the Echo State Network (ESN) [2] [3] is the model

of choice when computational efficiency of the training algorithms is of interest, as is the case

of distributed learning on possibly low-powerful devices. ESNs are fundamentally based on the

idea of exploiting the network activations from the point of view of a discrete-time dynamical

system. For the sake of convenience, we recall that an ESN architecture comprises an input

layer, a recurrent hidden layer (called the reservoir), and an output layer (called the readout).

In practice, the parameters of the recurrent hidden layer (i.e., of the reservoir) can be left

untrained after proper initialization based on asymptotic stability conditions. A resulting

striking advantage in comparison to conventional RNNs models is given by the extreme speed

of training, as the learning problem formulation is much simplified (and typically boils down

to a simple linear regression/classification). The idea of studying the evolution of the recurrent

network as a dynamical system is not unique to ESNs but it is shared under the hat of the so-

called Reservoir Computing (RC) paradigm [4].

RC in general and ESNs in particular offer a unique trade-off between complexity and accuracy,

making them suitable for applications in learning tasks related to monitoring the human state

conditions from sensor devices. For more information on RNNs, RC, and ESNs, the reader is

referred to Section 2.1 of D4.1 (which also motivates in detail the adoption of the RC/ESN

approach within the activities of WP4), or to the available literature surveys, e.g. [5] [6] [7].

To evaluate the performance of ESNs, and Deep ESNs [8], in comparison to the most common

variants of RNNs over tasks of human state and activity recognition, we have performed a

benchmark over a diverse set of networks and datasets, recently published in [9]. Our analysis

comprised vanilla RNNs, Long Short-Term Memory networks (LSTMs) [9], Gated Recurrent

Units (GRUs) [10], and their deep variations. The tasks considered in our analysis included a

variety of cases in the area of Human State Monitoring (HSM), namely WESAD and

ASCERTAIN, and Human Activity Recognition (HAR), namely HHAR, PAMAP2, and

OPPORTUNITY. Full details on the datasets, as well as on the experimental conditions analysis

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 14 - September, 2021

can be found in [9]. Here we limit ourselves to indicate that all the explored alternative learning

models underwent an individual process of model selection in order to tune the respective

relevant hyper-parameters, while keeping the number of trainable parameters comparable in all

the cases. The major outcomes of our analysis are reported in Table 2, which shows the average

accuracy (and std) achieved by the different models on the various tasks.

Table 2 Average accuracy and standard deviation on the test set. The averages and standard deviations

are computed by retraining the models 5 times, each with a different random initialization of the weights.

Reported from [9].

The results clearly indicate that, despite their simplicity, ESNs are able to achieve a level of

accuracy that is competitive with those models that require full adaptation of the parameters.

Moreover, our results also point out that gated RNN architectures (especially GRUs) can be of

particularly appealing in light of the high level of accuracy that can be achieved on HSM and

HAR tasks. While in the current literature the GRU approach is fundamentally hampered by

the high computational costs of the involved training algorithms, some of our recent research

efforts have been devoted to find suitable hybrid RC-GRU methodologies that would be able

to keep the advantages of both approaches. From a broader perspective, our analysis also points

out that RNN in general can be a first choice for the class of tasks under consideration, in

particular their deep and gated variants.

While the elementary characterization of RC methods is to leave untrained the recurrent hidden

connections to reduce the training costs, a fundamental downside is that the developed temporal

representations are achieved by a dynamical system that, in its settings, is agnostic with respect

to the learning task on which it is applied. Hence, a relevant line of research in the field consists

in looking for smart and cheap local learning algorithms, that are able to adapt some parts of

the reservoir dynamics based on the task information [4]. Related to this aspect is the great

interest for a specific dynamical regime of the recurrent hidden layer of an RNN/ESN, known

as the ‘edge of criticality, or ‘the edge of chaos’ (EoC) [11]. This essentially represents the

transition between stability and instability, where the computational properties of the recurrent

layer are maximized. While the most widely known algorithm for tuning the reservoir

dynamics, i.e. Intrinsic Plasticity [12], only indirectly leads to dynamical improvements of the

reservoir system, in a recent paper we have introduced a novel training algorithm for ESNs

which directly targets the proximity to the edge of EoC as an objective for optimization. The

algorithm is named Phase Transition Adaptation (PTA) [13], and, as reported in Table 3, has

been empirically demonstrated to sensibly improve the performance of conventional ESNs (and

relevant architectural variants, including Simple Cycle Reservoirs – SCR [14]) on a set

numerical benchmarks. See [13] for full details on the algorithm and the experimental analysis.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 15 - September, 2021

Table 3 NMSE (the lower the better) on the test set of classical RC benchmark datasets achieved by ESN,

SCR and PTA. Best results arehighlighted in boldfont. Reported from [13].

2.2 Federated Learning

In a centralized setting, a Machine Learning algorithm can make use of all the available training

data to produce a predictive model that best generalizes to unseen data. Unfortunately, a

centralized setting is not always feasible. When the data comes from multiple independent

devices, constraints such as network connectivity, bandwidth, and privacy preservation can

make it impossible to aggregate the training data within a centralized location.

In a typical Federated Learning scenario [15], the aforementioned problem is tackled by letting

each client produce a local Machine Learning (ML) model trained on just the locally available

data. Then, instead of the raw data, it is the models that are transferred to a centralized location

such as a server.

In the server, the models must be aggregated by strategy (e.g., averaging the weights) and then

sent back to the clients if they need it for inference or further training. The critical point for an

effective federation lies in the aggregation strategy, which ideally should produce a single

compact model that incorporates all the knowledge from each client. However, due to the

notorious difficulty in the interpretation of the weights of a neural network, it is not easy to give

guarantees about the outcome of the aggregation.

One of the simplest techniques from the literature to enable Federated Learning for virtually all

kinds of neural networks, including RNNs and ESNs, is that of training the models locally on

each independent device, and then using on the server an aggregation strategy that is commonly

known as Federated Averaging [16], illustrated in Figure 2.

Figure 2 Federated Averaging Scheme. Each client c sends the local matrix Wc to the server. After the

aggregation of the models is performed in the form of a weighted average, the server sends back the same

matrix W to all clients. Taken from [17], to which the reader is referred for all details.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 16 - September, 2021

In the Federated Averaging strategy, the weights of each locally trained model are aggregated

in the central server by an element-wise average, possibly weighted by the size of the local

datasets. In the special case of ESNs, we can assume the scenario of a uniform configuration of

the reservoir among all clients. In practice this means that the input-to-reservoir matrices and

the reservoir-to-reservoir matrices will be identical in all clients. In this case, since the

connections pointing to the reservoir are all untrained, Federated Averaging simply amounts to

the transmission and averaging of the readout weights alone.

Averaging the readout weights is a straightforward technique that however does not give any

strong guarantee about the performance of the aggregated model. We have proposed a novel

federation method that can applied to ESN models, whose aggregation strategy guarantees

optimal aggregated weights given the data and the reservoir. We refer to this strategy as

“Incremental Federated Learning” [17], schematically depicted in Figure 3.

Figure 3 Incremental Federated Learning scheme. Each client sends the local matrices Ac and Bc to the

server. After the matrices are aggregated and multiplied by the optimal readout weights, the server

transmits W back to all clients. Taken from [17], to which the reader is referred for all details.

In Incremental Federated Learning, we exploit an algebraic decomposition of the typical

readout training equation to produce two matrices that get transmitted to the server. These two

are then recombined in the server, to produce readout weights that are mathematically

equivalent to those that would have been computed if the data was locally available to the

server. Full details are reported in the paper [17].

The advantages of the proposed approach are manifold. First, the long-proven characteristics

of ESNs make it possible to train predictive models very efficiently, even directly on the edge.

Second, the global model that is produced by aggregating the local models is optimal in the

sense that no better equivalent model could have been produced by gathering all the training

data within a centralized node. This point is illustrated by means of experimental analysis on

two relevant datasets in the field of HSM and HAR, as shown respectively in Table 4 and Table

5, from which it can be seen that the performance of Incremental Federated ESNs matches the

one of the centralized models and evidently outperforms the one achievable by Federated

Averaging. Third, privacy constraints are preserved since the potentially sensitive training data

is never transmitted over the network and remains confined within each local node.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 17 - September, 2021

Table 4 Training and Test accuracy on WESAD, achieved by Centralized model, Federated Averaging

(FedAvg) and Incremental Federated (IncFed) Learning. Taken from [17], to which the reader is referred

for full details.

Table 5 Training and Test accuracy on HAR, achieved by Centralized model, Federated Averaging

(FedAvg) and Incremental Federated (IncFed) Learning. Taken from [17], to which the reader is referred

for full details.

2.3 Continual Learning

Learning continuously from non-stationary environments and ever-changing data streams is a

complex challenge. Machine Learning algorithms and models today often assume an i.i.d.

distribution of the underlying training data which should be representative of the (fixed) task to

be solved. Hence, adaptation capabilities in many cases are only “simulated” through an

inefficient and expensive approach roughly based on three main steps: i) accumulate data; ii)

re-train the prediction model from scratch on all the accumulated data; iii) re-deploy the

prediction model. Continual Learning (CL), as a fast-growing field within the machine learning

and deep learning community, aims at developing more efficient and scalable algorithms for

incrementally acquiring new knowledge and skills and swiftly adapt to the ever-changing nature

of the external world.

As already discussed in D4.1, continual learning may not only improve the effectiveness and

sustainability of current AI solutions but also their robustness to catastrophic failures and

enabling more privacy-preserving approach where data never leave the device on which they

are collected / produce (and can be even deleted after training). However, CL poses challenges

that are still difficult to overcome especially for gradient-based optimization algorithms such

as neural networks that have been shown to suffer from Catastrophic Forgetting (CF) and the

inability to learn from non-i.i.d. data streams.

In order to address these issues, several approaches have been devised and can conveniently be

framed into a three-way fuzzy categorization: replay, regularization and architectural

approaches [18]. However, these approaches are often very specific to the narrow scenario on

which they are designed (e.g. class-incremental learning) and are difficult to port to even

slightly settings. This impacts significantly on the ability to deploy these algorithms into the

real world which are often tested on toy benchmarks and significantly constrained and artificial

environments.

More recently and also through the TEACHING efforts [19], the research community has

started to:

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 18 - September, 2021

1. Extend the scope of current continual learning algorithms to different or more general

scenarios other than the more common Task-Incremental, Class-Incremental and

Domain-Incremental ones;

2. Apply current CL techniques to a broader range of applications such as Human State

Monitoring (HSM);

As for 1., state-of-the-art continual learning approaches have mostly been tested on tasks where

data points are not temporally coherent and can be processed in isolation. However, this is rarely

the case for realistic use-cases where the temporal correlation often implies a semantic in the

data. Continual Sequence Learning and Classification is of uttermost importance for many

applications including the ones supported by TEACHING.

In [20], an initial study on how CL learning strategies work on different sequence learning tasks

and datasets for sequence classification is reported. To the best of our knowledge this is one of

the first attempts to provide a comprehensive empirical evaluation of continual learning with

deep recurrent neural networks. This work opened the path to the analysis of continual learning

with randomized neural networks for sequence modeling and in particular echo state networks

(more on this in Section 7).

A significantly important application for TEACHING is human state monitoring: being able to

understand the state of the human in Cyber-Physical Systems of Systems is crucial to adapt

system properties and behavior in order to reduce stress, boredom, errors and maximize

performance. However, this is not an obvious task if the environment, humans in the loops,

objectives change over time as the system has to be constantly re-trained with high frequency.

Continual learning has been only recently investigated in this important area of application that

can still be considered as a sequence learning and classification problem. In Section 7 more

details about first experiments carried out on this topic are reported.

2.4 Reinforcement Learning

The task of autonomous driving can be approached with two different approaches [21]. The

first assumes a modular pipeline that combines sensing and acting modules and machine

learning modules in order to understand the vehicle environment and decide on the actions to

be taken (e.g., on the driving profile to be selected). The actions are taken by the acting modules

and control the vehicle behaviour based on predefined setups. The second assumes an end-to-

end learning setup in which a neural network takes as input data from sensors and decides on

the commands to be sent to the actuators (i.e., brake, gas, steer). The benefit from the former

approach is on the ability to separately evaluate and control the behaviour of each module, and

also on the ability to add more sensors or modules in order to further improve the vehicle

navigation. Developing each module separately makes the overall task much easier as each of

the sub-tasks can independently be solved by popular approaches for each task. In contrast, the

latter approach demands a complete retraining of the ML model, when a new sensor is added

or an actuator is replaced and any outlying behaviour can hardly be traced and reasoned.

In order to train an end-to-end learning approach or a machine learning module in the modular

pipeline, which decides the vehicle actions based on the sensors’ input, we can either employ

imitation learning [22] [23] or reinforcement learning [24] techniques. In the case of imitation

learning, the systems learn to operate the vehicle by monitoring how human drivers behave and

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 19 - September, 2021

imitates their reactions [25]. The main advantage of this technique is the limited effort needed

for training, since there is no need to define or describe the driving model, but simply to provide

the model with training data. Its main restriction is the limited ability to generalise, since when

the vehicle is trained in a specific environment (e.g., in a highway), we cannot be sure of its

behaviour on a different environment (e.g., in a local road).

Reinforcement learning requires a more detailed description of the task, and the system will be

able to learn after a long number of trial-and-error repetitions. A limitation is that the system

cannot be trained in real conditions (e.g., on an actual car) since it learns through its errors,

which in a real setup could be catastrophic in the case of an error that leads to an accident. For

this reason, RL is usually performed on simulated environments, before we can consider the

RL model ready to be deployed. These features make RL more appropriate for the modular

approach, in which the final decision of the RL model is fed to an acting module (e.g., a driving

mode selector) and not directly on a vehicle actuator, e.g., on the gas or brake.

Having all the above in mind, the driving personalisation module in TEACHING has been

modelled using the modular pipeline approach. At the heart of this approach is the

Reinforcement Learning module, which takes as input the streams of vehicle or driver sensors

and decides on the driving mode that will be employed at each moment. Reinforcement learning

has been used in the context of ADAS, in order to personalise the driving experience [26] and

has been used in HCI, HRI, and CPSoS in general, for personalising the user experience [27]

[28] [29].

The RL technique is based on the process by which an agent is trained by giving him the state

of the environment he is called upon to solve and some reward policy. The agent tries different

actions and after evaluating the action receives a reward. The same process is repeated until the

agent solves the problem. An integral part of the RL solution is the definition of the RL task, as

depicted in Figure 4.

Figure 4 The basic idea and elements involved in a reinforcement learning model.

RL algorithms are classified into two main categories depending on whether or not they are

model-based (Model-Based, Model-Free). This distinction refers to whether an agent, during

training or performing a move, uses environmental predictions for his move, such as the rules

of a game. In the project we dealt with the Model-Free category, as the problem of

personalization is a complex problem and it is almost impossible to model driving and its

personalization.

The next division of model-free approaches is in Policy Optimization and Q-Learning which

are both based on the Markov Decision Process and their algorithms have several similarities

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 20 - September, 2021

in their structure and performance. However, they differ radically in how they approach the

choice of the next move by the agent. The goal of Q-Learning is to teach the agent to learn a

deterministic solution that comes from a set of possible moves that will always choose the one

with the highest reward (value based). In Policy Optimization, the solution can be stochastic

and the agent aims to learn the best way in which a state of the environment is connected, with

the next move (policy based). The Policy Gradient, A2C / A3C (Advantage Actor-Critic), PPO

and TRPO algorithms are briefly classified in Policy Optimization and the DQN, C51, QR-

DQN and HER algorithms in Q-Learning.

The Advantage Actor Critic algorithm is often found in two variants, A3C (Deepmind Async

method) and A2C (OpenAI Sync method). A3C refers to its initial implementation by [30] and

has to do with the parallel execution of multiple asynchronous instances of the agent, while

A2C has to do with a later study by [31] which has shown that asynchronous execution does

not significantly contribute to performance but can often reduce the efficiency of sample

collection.

2.5 Privacy-preserving Learning

Machine learning models are often trained on sensitive data, such as health parameters, daily

routes, or other identifying information. It is of paramount importance to guarantee the user's

privacy in these scenarios, and for this reason, it must be ensured that the model does not leak

private information about the user's data.

The most popular methods to enable privacy-aware training of machine learning models are

based on the notion of differential privacy. The idea behind it is that a model is considered

private if it is not possible to determine if a specific sample was present in its training set or

not. The differential privacy guarantees depend on a privacy budget < 𝜖, 𝛿 >, which can be

used to control how private the model should be.

In TEACHING, privacy-aware training is a fundamental concern. For example, in the

automotive setting, no data should leave the car, and the resulting model should guarantee the

user’s privacy.

The main machine learning models used in TEACHING are ESNs and RNNs. Therefore,

privacy-aware training is based on the differentially private SGD [32], a privacy-aware training

algorithm designed for deep learning models. Currently, the literature on privacy-aware training

is focused on feedforward and convolutional models, while recurrent models are under-studied.

Our work in TEACHING could provide practitioners with useful guidelines to improve

privacy-aware training of recurrent networks.

2.6 Dependable and Safe AI

In the previous deliverable D4.1 we introduced a number of metrics to ensure the dependability

of NNs in order to use them in safety critical applications. Considering that TEACHING project

focuses on sequential data we need to study how to ensure dependability of RNNs to be used

in safety critical applications, such as in the automotive field. Automotive applications require

adherence to Functional Safety for road vehicles [33] because without safety assurance the

system can cause physical injuries or damage to the health of persons. If RNNs used to perform

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 21 - September, 2021

human state monitoring do a mistake in the prediction of the psychological state of the driver,

the driving of the vehicle could be entrusted to the driver even if the latter is not able to drive

the vehicle. This scenario can cause an accident with negative impacts on the safety of the

driver, passengers, and people in close proximity to the vehicle.

For this reason, the prediction of the psychological state of the driver is a safety-related task,

which means that the system needs to be designed following Functional Safety guidelines. A

feature of RNNs and, in general, of all the Neural Networks, is that the core of these software

elements is not easily interpretable by humans and can be considered as a black box. Even with

a completely deterministic model, the RNN’s computations are complex and difficult to

understand under all the possible scenarios. As a consequence, the model may fail in

unpredictable ways. Keeping this consideration in mind, we can say that the most popular

Functional Safety standard for Road Vehicles, the ISO 26262 [33] cannot be applied to design

and test Neural Networks because it refers to the development of traditional software, where

the behaviour is simpler and explicitly defined by the programmer. A new standard that can

overcomes this problem is the ISO 21448 (version prepared for DIS), also known as SOTIF

[34], a standard born to address the challenges introduced by autonomous driving systems with

automation levels from 1 to 5.

SOTIF analyzes the possible behaviours of a function of the system (or the possible behaviours

of a single element) that differ from the intended/desired behavior to verify if there are possible

known scenarios that can be exploited to harm people. Furthermore, SOTIF tries to find out

also possible unknown scenarios that can harm people. Once scenarios of potential risk for

people’s health have been discovered, SOTIF provides guidelines to mitigate the risk to an

acceptable level. When all the possible safety risks have been mitigated to an acceptable value,

the function can be released. One key requirement posed by SOTIF on each algorithm,

component, and, in general, to the entire system is robustness. Robustness is usually understood

as the ability of a system to react to adverse events, such as noise injection to the system inputs.

However, robustness is not sufficient to consider a RNN safety. We need of some indicators

capable of measuring the “safeness” of the RNN.

To address this challenge, we submitted a paper where we propose a methodology to reach

Functional Safety compliance of RNNs [35]. First of all, we verify the robustness of RNNs with

respect to inputs perturbations, such as those generated by systematic errors in the sensors data

acquisition, environmental conditions, or adversarial perturbations [36]. To ensure the safety,

RNNs must be robust to all these different noise sources. We propose a methodology that uses

the robustness of the model, computed with state-of-the-art methods such as POPQORN [37],

with respect to a range of accuracy values. By themselves, this robustness analysis of the RNN

does not provide sufficient information about the safety of the RNN. For this reason, our

methodology also provides a method to evaluate how often we are potentially unsafe through

the use of Safety Performance Indicators (SPIs) [38] that count the number of unsafe

occurrences. Depending on the specific needs of the application, a set of appropriate SPIs can

be defined, along with the target values to be reached. Finally, a number of test scenarios must

be performed and evaluated for each SPI. In the following we explain the phases to make a

RNN compliant with Functional Safety.

2.6.1 Determination of RNN Adversarial Robustness by Inputs Perturbation

The first phase relies on the evaluation of robustness using POPQORN [37], where we measure

how much noise can be injected into the input samples before the RNN’s accuracy decreases

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 22 - September, 2021

below a predefined threshold. More formally, given an input sequence 𝑋0 we can add noise and

move towards the input 𝑋0
′ that is at a distance Δ from 𝑋0 (Figure 5). Let us focus on a sequence

classification task: for small values of Δ, the correct output of the network should be the same

class of the original sequence, therefore hinting at a robustness of the RNN to small

perturbations.

Figure 5 Sample 𝑿𝟎 and perturbed sample 𝑿𝟎
′ at a distance Δ.

Now, let us provide a sample 𝑋0 as input to a properly trained RNN and suppose that the RNN

will provide as output a correct prediction 𝑌0. We can identify a region of space around the

sample 𝑋0 such that all input samples 𝑋0
′ = 𝑋0 + Δ, Δ < 𝑑 inside the region will be correctly

classified as the class 𝑌0 (Figure 6), with a determined accuracy (e.g., accuracy greater than

95%).

Figure 6 Input space around 𝑿𝟎 providing a correct prediction with a determined accuracy.

The goal of this first analysis is to determine three input spaces around 𝑋0 where all the samples

inside each region are correctly classified with a probability above a specified minimum value

(e.g. 0.95, 0.8, 0.5). As a result, we obtain a measure of the local robustness of the RNN around

the original input 𝑋0, which are the three concentric hyperspheres corresponding to the different

accuracy levels (Figure 7).

To accomplish this goal, we define three different RNN output threshold values: 𝑎1, 𝑎2, 𝑎3 with

the following relations: 𝑎3 < 𝑎2 < 𝑎1. After, we shall apply different perturbations to the

input sample 𝑋0 to generate three different spaces as follows (Figure 7):

• 𝑆1, space of the perturbed inputs with distance 𝑑 ≤ 𝑑1 from 𝑋0;

• 𝑆2, space of the perturbed inputs with distance 𝑑1 < 𝑑 ≤ 𝑑2 from 𝑋0;

• 𝑆3, space of the perturbed inputs with distance 𝑑2 < 𝑑 ≤ 𝑑3 from 𝑋0.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 23 - September, 2021

Figure 7 Input samples with distance 𝒅 ≤ 𝒅𝟏, 𝒅𝟏 < 𝒅 ≤ 𝒅𝟐 and 𝒅𝟐 < 𝒅 ≤ 𝒅𝟑 from 𝑿𝟎 belonging

respectively to spaces: red, blue and grey.

Indicating with 𝑠 a generic sample, we want to determine the values 𝑑1, 𝑑2 and 𝑑3 such that:

• providing as RNN input the samples 𝑠 ∊ 𝑆1, the corresponding outputs have an

accuracy 𝑎 ≥ 𝑎1;

• providing as RNN input the samples 𝑠 ∊ 𝑆2, the corresponding outputs have an

accuracy 𝑎2 ≤ 𝑎 < 𝑎1;

• providing as RNN input the samples 𝑠 ∊ 𝑆3, the corresponding outputs have an

accuracy 𝑎3 ≤ 𝑎 < 𝑎2.

The process to determine the values 𝑑1, 𝑑2 and 𝑑3 must be repeated over an adequate number

of samples in order to have a more robust evaluation of values 𝑑1, 𝑑2 and 𝑑3. To accomplish

this, a number N of input samples must be considered, resulting in N different sets of values of

values 𝑑1, 𝑑2 and 𝑑3, one set for each sample:

𝑑1
0 𝑑2

0 𝑑3
0 for 𝑋0

𝑑1
1 𝑑2

1 𝑑3
1 for 𝑋1

𝑑1
2 𝑑2

2 𝑑3
2 for 𝑋2

…

𝑑1
𝑁 𝑑2

𝑁 𝑑3
𝑁 for 𝑋𝑁.

We can compute average/max statistics from these values to determine the RNN’s robustness

as indicated below:

𝑑1 = 𝑚𝑒𝑎𝑛{𝑑1
0, 𝑑1

1, 𝑑1
2, … , 𝑑1

𝑁}
𝑑2 = 𝑚𝑒𝑎𝑛{𝑑2

0, 𝑑2
1, 𝑑2

2, … , 𝑑2
𝑁}

𝑑3 = 𝑚𝑒𝑎𝑛{𝑑3
0, 𝑑3

1, 𝑑3
2, … , 𝑑3

𝑁}.

Notice that we do not give here any minimal values for 𝑑1, 𝑑2 and 𝑑3 since these will depend

on the specific application and the chosen samples. The values should be used to compare

between different models.

2.6.2 Design of Safety Measures for Plausibility Checks

The second phase is aimed to evaluate the results achieved from the previous phase to establish

which are the more appropriate safety measures that shall be applied. In this context safety

measures can consist in a plausibility check to verify the information provided by the RNN.

The plausibility check is provided by using one or more parallel redundant systems that can be

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 24 - September, 2021

different algorithms that exploit the same inputs of the main system based on the RNN or can

be systems with algorithms and sensors of different technology (for example radar or lidar) and

so on. After the RNN based system and the redundant systems have computed their input data,

there is a third system, the comparison system, that is responsible to perform a comparison of

the results achieved and shall decide if the output of the RNN based system can be plausible or

not (Figure 8).

Figure 8 The comparison system performs the plausibility check among the RNN output and the output of

one or more redundant systems and makes a decision.

In the case that the output of the RNN based system is judged not plausible by the comparison

system and there is no condition for making a decision, the comparison system shall bring the

system (and the vehicle) to the proper safe state depending on the current situation. However,

to decide which is the more appropriate safety measure, the size of the spaces 𝑆1, 𝑆2, and 𝑆3

determined during the evaluation of the adversarial robustness of the RNN shall be taken into

account. For example, in the case that 𝑆1 is much bigger than 𝑆2 and 𝑆3 can be considered

negligible, we can consider the RNN quite reliable and so the safety measure can be constituted

by an unsophisticated redundant system. A different case, for instance, involves a configuration

where 𝑆1 is bigger than 𝑆2 but it is not predominant compared to this latter and 𝑆3 can not be

considered negligible; in this situation we shall design a more robust safety measure consisting

of more redundant systems. The safety measure, comprising one or more systems, as well as

the system based on the RNN and the comparison system, shall comply with specific time

constraints provided by the application requirements. Safety critical applications shall operate

in real time and so time constraints shall be considered during the design of the RNN based

system, the redundant system (or systems) and the comparison system.

2.6.3 Safety Validation: Determination of SPIs and Test Length

The third phase consists in validating the achieved overall system, which includes the RNN

based system and the safety measures adopted (redundant system or systems).

The SOTIF provides strategies to verify and validate the system, determining whether the risk

associated to the function is reasonable (and so acceptable) or not. The verification step consists

in the testing of the function against the known hazardous scenarios, that are those situations in

which the function does not behave as expected causing a potential harm for involved people.

The goal of the tests is to demonstrate that the potentially hazardous scenarios have been

properly managed, and the associated risk previously discovered can now be considered

reasonable and so acceptable.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 25 - September, 2021

After the verification, the functionality of the system shall be validated. The validation consists

in the execution of tests to discover if there are unknown scenarios that can be potentially

hazardous and so cause harm for involved people. To discover such unknown scenarios a series

of tests are performed; such tests are aimed to observe the behavior of the function in as many

real-life scenarios as possible: if the behavior deviates from the desired one and a potentially

hazardous situation causing an unreasonable risk for the safety of people is found, some (or

additional) safety measures shall be planned and developed to reduce the risk at an acceptable

value. To measure the performance of a functionality, the SOTIF suggests KPIs as metrics; the

KPIs are aimed to evaluate the performance of the functionality, that is the quality of the

functionality. But from a Functional Safety point of view, we are interested not exactly to the

general quality of the functionality, that is how well the functionality performs, but we are

interested to evaluate how often the functionality is potentially unsafe. For this reason, it is

better to use indicators that give a measure of the safety performance, the so called SPIs (Safety

Performance Indicators) [38].

The SPIs give a measure about the dangerousness of the functionality (including the RNN)

being tested, by telling us (for example) if there are dangerous misbehaviors, dangerous gaps

in the considered ODD (Operational Design Domain), dangerous gaps in fault responses,

dangerous defects in requirements, design, etc. In other words, an SPI gives a measure of the

arrival rate of adverse events. SPIs shall be determined at different abstraction levels; so, we

have SPIs for the overall functionality (or system), SPIs for the immediate sub-functionalities

(or sub-systems) up to SPI for the atomic elements such as the RNN based algorithm, sensors,

etc. Once the SPIs have been defined, for each of them you shall define the target value, a

threshold value that each SPI shall not exceed to consider the safety related risk associated to

the functionality acceptable. This threshold value indicates the risk budget that you do not want

to overcome when your tests ended.

Before starting of the testing phase, a suitable test length shall be determined [34]. The test

length expresses the quantity of hours or mileage you shall test the functionality and can be

affected also by the criticality of selected test routes.

2.7 Anomaly Detection

Anomaly detection (also called outlier or novelty detection in some contexts) aims to detect

rare events that deviate significantly from the majority of the data or differ from an expected

pattern. It is an active area of research, with increasing demand since it can be very useful in

many different domains. Although classical ML methods (e.g., distance-based, ensemble-

based, statistical algorithms) have been widely adopted in anomaly detection tasks, their

performance is challenged when they are applied on IoT data streams [39]. In this context, some

of the significant challenges occur due to scalability issues, high dimensional and

heterogeneous feature spaces, feature interdependencies, cost of feature extraction, sparsity of

anomalous events and imbalanced classes, and the difficulty to detect conditional anomalies

(contextual, collective or time-dependent anomalies).

Deep learning methods have been very promising in learning useful representations from high-

dimensional and heterogeneous data. They are scalable with big data volumes, adaptable in

handling heterogeneity, and do not require cumbersome feature engineering, which enables

end-to-end optimization of the whole task pipeline [39] [40] [41]. Moreover, representation

learning of normality/abnormality is another advantage in deep learning methods, since

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 26 - September, 2021

classical unsupervised methods can only estimate statistical deviations without obtaining any

prior knowledge of expressive representations, which can be useful to generalize and detect

novel anomalies [40]. Finally, deep sequential models are very effective in dealing with

temporal complexity and capturing long-term dependencies, a desired property in IoT data

applications in which time-series data are more closely related to collective or contextual

anomalies than point anomalies [41] [42].

Deep anomaly detection aims to learn either feature representations or anomaly scores using

neural networks. Extracted features can then be used with a downstream anomaly scoring

algorithm in a disjoint learning setting. However, a more recent paradigm is learning feature

representations of normality [40], in which a single model is used to both learn features and use

the learned representation of normality to obtain the anomaly scores. A prominent choice

following this paradigm is the autoencoder model, which learns low-dimensional feature

representations and then its data reconstruction error is used to define an anomaly scoring

function. The core assumption, in this case, is that the normal instances can be reconstructed

more accurately than the anomalies. Autoencoders are straightforward in terms of

implementation and training, while they are generic, allowing the integration of any deep

learning network type in their architecture, e.g., CNN, RNN, etc., depending on the nature of

the data (e.g., sequential, tabular, images). Some drawbacks might occur when the normal

instances used in the training are not pure enough and contain anomalies. In this case, the model

might learn a normal representation that is biased by several irregularities, resulting in weakness

to detect such irregularities as deviations from the normal.

To adapt the autoencoder architecture to sequential data such as the IoT data streams captured

in TEACHING, the implementation can use recurrent hidden layers similarly to the LSTM-AE

architecture [43] [44]. The implementation of the LSTM-AE architecture comprises of two sub-

networks, the encoder and the decoder, which are constructed with LSTM units since these

models can track long-term dependencies in temporal or sequential data, such as sensor and

time-series data. The computation flow is as follows: a multivariate input vector passes through

the encoder which consists of one or more LSTM layers of progressively smaller

dimensionality; the output encoding, is a compact representation of lower dimensionality,

which is then fed into the decoder subnetwork, the final layer of which, is a reconstruction layer

of the same size as the original input. The objective function uses the reconstruction error to

penalize the difference between input and reconstruction.

After the network has been trained with normal instances, the reconstructions errors of the

normal representation can be used to define the anomaly scoring function. The simplest solution

is to define a hard threshold by taking for example the highest reconstruction error from the

normal data and mark all new instances exceeding this error as anomalies. A more robust

solution is proposed in [43] [44] the reconstruction errors e of normal data are modeled as a

multivariate Gaussian distribution, and its parameters μ and Σ are estimated using Maximum

Likelihood Estimation. The anomaly score for a new data point is then computed as 𝑎 =
(𝑒 − 𝜇)𝑇𝛴−1(𝑒 − 𝜇), and a threshold over the likelihoods is learned by maximising the Fβ. In

general, continuous anomaly scores can be much more informative than just a binary label.

The anomaly detection learning module as part of the AIaaS is intended to be used by a

cybersecurity application that will function as an intrusion detection system monitoring network

traffic in TEACHING system. This functionality is aimed to enhance the dependability of the

system against cyber attacks as described in D3.2 and D5.2. Nonetheless, the generic nature of

the algorithm makes it suitable for other applications besides cyber threat detection within the

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 27 - September, 2021

TEACHING framework. For example, anomaly detection can be applied to human biometrics

data, or resources consumption measurements, runtimes, and other unlabeled time-series data.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 28 - September, 2021

3 AIaaS Architecture

This section focuses on the AI as a Service (AIaaS) software architecture that supports AI

applications in TEACHING. Section 3.1 recaps the rationale of the approach, Section 3.2 lists

the high-level requirements of the architecture, as they were refined after the release of D4.1.

Section 3.3 provides an overview of the current architecture supporting AIaaS, while Section

3.4 discusses the data and metadata format adopted for communication within the architecture.

3.1 Rationale

The TEACHING approach to AIaaS on Edge and Cloud devices relies on designing reusable,

portable AI application as a combination of composable, generic app-building blocks called

Learning Modules (LM) and data sources. The rationale of the approach is that:

1. The LM building blocks can be separately ported to and optimized for different device

HW/SW architectures, increasing their efficiency with respect to common metrics

(performance, power consumption), allowing careful debugging and verification, as

well as allowing to exploit specific features of the execution platform within the LM.

2. AI applications are more easily developed, reducing their overall complexity, increasing

their reliability, and shortening the time-to-market.

3. AI applications effortlessly become as much portable as the LM supporting SW

architecture is. That is, deploying apps on a plethora of Cloud ad Edge devices is

allowed by making the focused effort of adapting the AIaaS support to those devices,

without need of changing the apps and allowing different HW/SW devices to

interoperate in a distributed software platform.

The aim of developing a dedicated support architecture for AIaaS in TEACHING thus requires

choosing a trade-off between LM expressiveness and tailoring the LM to the HW. This is

necessary in order to strike a manageable balance between achieving reusability of AI Apps

across AIaaS implementations and easing the porting of the whole AIaaS architecture to new

devices (this shall remain a mostly straightforward and manageable task except possibly for

HW-specific optimizations). Two main abstract goals were held as reference “lighthouses” in

the process of architecture design:

• Allow adoption in TEACHING (being fit for the use cases): The architecture must be

portable and lightweight to suit the automotive and avionic use cases, allowing to build

generic application with the suite of LM provided, while at the same time allowing to

exploit specific hardware resources thanks to interchangeable implementations of the

same LMs.

• Allow reuse in different contexts: The AIaaS supporting architecture shall be useful as

a tool for porting AIaaS applications in different execution contexts, including the Cloud

and various types of Edge devices (e.g., mobile units as well as fixed edge devices).

Developing a full AI stack and development kit would be out of scope and would not

get any adoption, thus the architecture needs to be designed exploiting existing,

technologically relevant and/or industrial-standard AI frameworks at its core, namely:

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 29 - September, 2021

o TensorFlow (supported since the mock-up)

o TensorFlow Lite

o WindFlow / FastFlow

The impact of the different choices with respect to the core AI framework and their implications

on the AIaaS architecture design are discussed in the rest of this deliverable, specifically in this

section and in Section 4.

3.2 High-level Requirements

We briefly summarize what the chosen AIaaS approach entails, stemming from its thorough

description in D4.1 but also including further development after the release of said deliverable,

i.e., results of the AI research activities and of the SW development and integration activities

on the first prototype.

The TEACHING AIaaS architecture needs to support:

• LM execution (possibly on different supporting frameworks, according to the AIaaS

implementations);

• the overall application deploy/manage/adapt/shutdown lifecycle and its impact on

corresponding LM actions

• provide communications connecting its own local modules, that need exchanging:

o structured data to be processed, or already processed; both batch and streaming

communication modes are relevant for the AIaaS support;

o metadata (as associated to the data);

o model information (i.e., weights, coefficients that encode an AI model);

o model metadata;

o exception-like aperiodic messages (possibly with data payload) for specific uses

within application (e.g., aperiodic out-of-band knowledge reporting, self-

evaluation and issue detection and reaction);

• provide access to local storage, sensors, actuators, remote connections (exploiting the

same communication mechanisms and modes already outlined): Remote connection is

also a mean to implement distributed machine learning (DML). AIaaS currently

supports this model but does not yet implement it. Each app in a specific AIaaS

instance can be part of a larger DML scheme, but for the moment this scheme is not

encoded in any specific LM, the architecture only provides the basic tools with respect

to the task. A future research activity and a revision of the AIaaS and, most important,

of the set of LM, may allow to systematize and simplify the creation of DML schemes

among multiple AIaaS App instances.

• support a model where the reliability of (combinations of) LMs can be

esteemed/evaluated via mechanisms that are built in the LMs and/or via additional,

dedicated LMs, and can result in periodic/aperiodic actions and reactions within the app

itself, as well as communication outside the specific app instance.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 30 - September, 2021

3.3 Overview

This section provides and overview of the software architecture supporting AIaaS in

TEACHING. As it reports about an architecture already defined in D4.1, we aim at a self-

contained presentation that does summarize key information from the previous deliverable

while focusing on changes and advances with respect to that document. Specifically, we shall

distinguish the overall design of the software architecture from its mock-up implementation.

The mock-up was used to kickstart the prototype implementation and over time is gradually

extended with new implementation of all the key modules.

3.3.1 Architecture Overview

In Figure 9 we show the current SW architecture of the AIaaS support, basically the same

presented in deliverable D4.1, despite some minor evolutions. The overall design of the system

remains the same: applications are provided in a mostly descriptive form (Application

Description, heavily based on the composition of predefined Learning Modules) which is

processed by the Application Translator component. The translations employ available

implementations of the Learning Modules stored locally in the LM Library to produce

executable code for the AI framework as well as initialization data, parameter/hyperparameters

for the computation, and support information for the Application Runtime to steer the

application execution. The computation mostly happens within the chosen AI framework, with

data flowing through internally3 to the AI framework as well as outside of it. The data is routed

internally to the AIaaS architecture by the Data Brokering component, which also interfaces:

• to the Sensors API group of devices, to receive data from the physical part of the CPS;

• to the Local Storage API group of components, in order to save and retrieve data, and

• to the External communication Interface, in order to allow data exchange with remote

systems;

• finally, the AIaaS support and the applications it hosts can influence the physical part

of the CPS via the DMU module4.

3 Note that the AI data bus is an abstraction, an Event Bus design pattern within the AI Framework that may not correspond to

a software component in the final implementation.
4 Within TEACHING use cases, the influence on the physical world is limited to setting parameters of the dependable systems

that actually interact with the physical world, e.g., setting the driving mode. This can affect the status of the driver and

passengers, but is a safe change to apply at any moment. Nevertheless, the architectural design takes into account that the DMU

interacts with dependable system and may thus refuse any demanded action.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 31 - September, 2021

Figure 9 AIaaS SW Architecture Diagram, current design

With respect to the design presented in D4.1, a direct interaction between the code in the AI

framework and the External communication interface is being studied (see Section 4.5).

The Figure 9 shows what the final design of the AIaaS system is expected to be. In the rest of

this Section 3 and in Section 4 we discuss the features of the AIaaS support, as well as the

design and implementation of its components. It is thus necessary to also show the current

implementation status of the whole architecture, which we present next in Section 3.3.2.

Application

Runtime

Data Ingestion / Brokering

External

Communication

Interface

AI Data Bus

LM_1 LM_2 LM_n

Cloud

Other vehicles

AI Framework

Sensors

API

DMU

Wearable

Vehicle

Cameras

RSUs

Others..

LM Init./runtime parameters

Learning

Module Library

Application

Translator

LM implementations

Local Storage API

Batch

Data

Model

Info

Metadata

Application Logic

Application

Description

Satellite

Direct Network

interaction

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 32 - September, 2021

Figure 10 AIaaS SW Architecture Diagram, M18 Prototype

3.3.2 Prototype Architecture

With respect to the current version of the architecture, that we presented in Figure 9, the mock-

up has simplifying assumptions. The M18 prototype (see Figure 10) that evolved from the

mock-up follows those assumptions. A few modules and interfaces are not yet needed, some

have not yet been developed or integrated. The prototype design differs from the reference one

in the following aspects:

1. As we are experimenting with the Application Runtime and Application Logic code within the

prototype apps (that are for this reason fully valid Python code) the following modules are different

or are not yet implemented (see Sections 4.2 and 4.3):

• Information concerning the application description is embedded within the

application itself via self-describing objects that are programmatically built. The

app is thus fully valid Python code, not a custom description (an alternative way

of seeing this is that the application description is part of the Python code of the

application).

• Application Translator is not yet used.

• The LM module library is not yet used.

• Application Logic is still embedded within the Application Runtime Module.

• The application runtime code is also embedded within the application.

2. There is no connection between the Data Ingestion/Brokering and the AI Data Bus, data

exchanges with MQTT are mediated by the Application Runtime’s scheduler (see Section 4.2).

Application

Runtime

Data Ingestion / Brokering

External

Communication

Interface

AI Data Bus

LM_1 LM_2 LM_n

Cloud

Other vehicles

AI Framework

Sensors

API

DMU

Wearable

Vehicle

Cameras

RSUs

Others..

LM Init./runtime parameters Application

Translator

LM implementations

Local Storage API

Batch

Data

Model

Info

Metadata

Applic

ation

Logic

Application

Description

=

valid Python

Code

Satellite

Data

Sche

duler

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 33 - September, 2021

3. There is no direct connection between the AI framework and the External Communication

Interface (see Section 4.5).

3.3.3 Application Description

The overall purpose, requirements, and rationale of having a formal, declarative document

format detailing the structure, constraints and intended behaviour of an AI application have

been discussed at length within deliverable D4.1 Section 4.2 (specifically sub-Section 4.2.2),

which we refer to. The content of the application description can be summarized as:

1. A list of the LMs that compose the application,

2. LM parameters and hyper parameters

3. LM initialization data / models

4. A description of all communications required among the LMs, with sensors, data

storage and outside the AIaaS instance (the Application Graph of typed data streams)

5. constraints and preferences for the LM execution, to help chose the best LM

implementation

6. code snippets, if needed, that deal with special cases and exceptions specific to the

application semantics in an unstructured manner. They are to be executed as part of the

Application Logic.

While the abstract design of the Application Description has not changed, the first

implementation in the M18 prototype relies on the information being provided by Python code.

The fully descriptive format is currently represented by programmatically built Python objects

that specify the necessary details. For the sake of clarity, we summarize some implementation

details that are described later on, in Section 4:

• Each LM is an instance of a Python object and is provided parameters at creation.

• The Application Graph, i.e., the set of communications streams among the set of LMs,

sensors, storage elements et cetera, is also a Python object programmatically created

when initializing the actual computation, before the application can start.

• Code snippets that implement custom function for the application are directly provided

as Python functions within the application code (see Section 4.2).

• Once the set of objects describing the whole of the application structure has been

created, the application can be started.

As such, there is not yet a strong separation between the declarative description of the app and

its imperative code.

3.3.4 Data Routing Definition in the M18 Prototype

At a high level, an application developer can declare an application that uses the TEACHING

framework by providing a few instructions in a Python file. We refer to the example application

stress.py that performs stress recognition and can be found within the main AIaaS software

repository5.

5 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/blob/master/applications/stress/stress.py

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/blob/master/applications/stress/stress.py

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 34 - September, 2021

In order to route data, the application developer declares the sensors and learning modules that

needs to be used, and then defines the routing of the application, in the form of a list of edges

forming a computational graph of information flow. For example, the code

app.route([

 (eda, teaching.output, {}),

 (eda, lm, {}),

 (lm, teaching.output, {}) # Exit point

])

instructs the runtime to route data from the eda sensor to the output (for display) and to a

learning module named lm (for prediction). The data emitted by lm is then further routed to the

output. The above code is a declaration for setting up the environment, it specifies some links

within the Application Graph, but does not cause yet any data to flow.

When the application is run, the outputs (in our example, the eda data and the predictions from

the lm) can be obtained by the last LM in the chain as soon as they are available.

while True:

 first_output, second_output = await app.output()

Data from different sources may be available at different times, and a generic LM may need all

of its data sources (or a specific subset of them) before it can start a computation. The abstract

definition of data routing provided by the Application Graph is thus connected with the

execution constraints of each LM within the application.

The pipeline graph outlined above is a very simple example where the data availability

constraints are obvious. Different synchronous and asynchronous computations among the set

of LMs in more complex Application Graphs are possible at application runtime. They can be

managed according to the dataflow6 computing approach. The actual execution order (the firing

order, in dataflow lingo) is chosen by the Application Runtime component (see Section 4.2).

3.4 Data and Metadata Formats

A common data format is desired for data that can flow through the LMs and AIaaS architecture

components. Requirements on the Data format were clear since previous Deliverable D4.1. The

format had to provide a common data representation that is both architecture-agnostic and

language-agnostic enough, and that causes a low data conversion overhead, in terms of:

1. absolute performance and memory occupation – especially on constrained HW

2. performance on the critical pat – no data conversion should be required in the

most demanding part of the AIaaS architecture, namely the AI framework

3. added complexity of SW – complexity would impact on code maintainability

and system dependability

As transferred data need to be associated with a type system and can be structured (e.g., for

passing tensors with data and model weights), from point 3 it follows that serialization,

deserialization and data conversions have to be performed via support libraries / off-the-shelf

6 https://cloud.google.com/dataflow

https://cloud.google.com/dataflow

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 35 - September, 2021

code, to avoid the pitfall of rewriting common code. Finally, in the same format it should be

possible to store, along with the data, suitable metadata to support AI applications.

In the following Sections 3.4.1 and 3.4.2 we outline the two solutions devised for data that

move across the whole AIaaS support, and data that is local to the AI framework.

3.4.1 Data format and message structure outside the AI framework

Outside of the AI subsystem (e.g., TensorFlow) and specifically when using the Data brokering

system, we plan to use Protocol Buffer as the main data format.

Protocol Buffers are the native format of TensorFlow and are publicly documented7 by Google.

They match the stated requirements of standardization, limited overhead, parsing and

conversion code being available off the shelf for multiple programming languages.

 As data may need to be routed to different LMs, to be retrieved at a later time and upon specific

conditions or by a different app than the originating one, metadata associated to the data is

needed. The foreseen metadata needs include:

3 application/LM that created the data

4 time of creation

5 data type and structure, if not encoded in the data format

6 source / destination component and module for data to be routed

To support attaching metadata to the data, we plan to exploit ProtocolBuffer custom options,

natively supported by Protocol Buffer since v2.

3.4.2 Internal data Format for the AI framework / AI data bus

For the sake of communicating data among LMs, a simpler data format is used in the M18

prototype, the DataPacket wrapper class. Within the AI framework, data flowing through

learning modules still needs to be annotated to support the functionalities offered by the

framework. For example, most of the times the data should have an associated timestamp,

which is used to synchronize different streams within the framework. Another annotation

indicates semantically what kind of data is flowing through an edge, for example “normal” data

or “label” information for training.

As of now, the DataPacket wrapper includes annotations for the timestamp and for the type.

The DataPacket:

• is a Python structured type,

• it provides storage for array data with labels, associated timestamps and type information

• it does not enforce a serialization at the LM boundaries for TensorFlow and TensorFlow

lite

• it can be easily used by the AI bus implementation (the AI bus is currently the function

acting as data dispatcher within the Application Runtime).

As the M18 AIaaS prototype is fully Python based, the Datapacket can be used also outside of

the AI Framework instead of the designed ProtocolBuffer format. Whether the DataPacket is

7 The ProtocolBuffer interfaces are documented here: https://developers.google.com/protocol-buffers, and the custom options

extension docs can be found at https://developers.google.com/protocol-buffers/docs/proto#customoptions

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/proto#customoptions

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 36 - September, 2021

still going to be used outside the AI framework, and in what implementations of the AIaaS

besides those based on TensorFlow, it is a matter to be discussed after the M18 prototype

finalization activities.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 37 - September, 2021

4 AIaaS Platform Components

This section describes the current status of implementation and choices of all components of

the AIaaS system, as they are in current M18 prototype.

For the sake of clarity, we underline again the distinction between LMs, which are the building

blocks of AI applications, and the software components that compose the AIaaS architecture

supporting the execution of applications made from LMs. While from a SW engineering

viewpoint both kind of entities are software components, when we speak of components in this

deliverable, ad definitely in this section, we are referring to the software components that

compose the AIaaS support architecture.

The AIaaS architecture must support LM modules written using TensorFlow, TensorFlow lite,

and FastFlow skeletons. Current AIaaS design can only support one such framework at a time

(i.e., no mixing of frameworks when combining LMs into an application).

The main programming language we support inside AIaaS application (i.e. as a glue language

in addition to the LM blocks) is Python. We foresee that this choice will not need to be revised

even when supporting different languages and execution modes (compilation vs interpretation)

for the implementation of the LMs. We assume Python execution is always available on all

project HW/SW platforms. Snippets of applications can be encoded in Python, if the platform

does not support a full python stack, Python-to-C translation with Cython can be considered.

The rest of this section discusses the AIaaS components currently existing in M18 prototype

and depicted in Figure 10 (Section 3, on page 32). Section 4.1 starts from the AI Framework

that the AIaaS leverages for LM execution. Section 4.2 describes the Application Runtime and

Application Logic, it discusses the implementation of the Runtime as well as of the data flow

and computation scheduling within the AIaaS architecture. Section 4.3 discusses the designed

function of the Application Translator (although its current implementation is still minimal).

Section 4.4 (Data Ingestion/Brokering) and Section 4.5 (External Communication) focus on the

design and the current implementation of the components providing communication support

respectively within the AIaaS system and with systems reachable via the outside networks.

The last three sections describe the components providing access to the physical part of the CPS

the AIaaS subsystem lives within, namely the set of its sensors (Sensors API, Section 4.6), the

local permanent storage (Local Storage API, Section 4.7), and the Decision Management Unit,

the component allowing AIaaS apps to “act” on the physical world (Section 4.8).

4.1 AI Framework

The AI framework hosts the learning modules as they are instantiated, linked together and

executed to perform any Machine Learning tasks needed by the AI applications. This module

leverages existing, in most cases Industry-standard ML technologies in order to provide the

implementation of the LM functionalities.

The choice of the ML technology used to implement the AI framework is not cast in stone: it is

a parameter of the AI Framework implementation. All LM modules are implemented on top of

the ML framework contained inside this module. LMs can have different implementations (with

the same semantics) over different ML frameworks. According to the actual choice made in the

AI framework implementation, the corresponding set of LMs is to be used.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 38 - September, 2021

The internal implementation of the AI framework is surrounded by a thin interface layer whose

purpose is to provide the interface of the AI Framework unchanged despite the different choices

made for the internal implementation (TensorFow, TensorFlow lite and so on). The interface

layer, where needed, is made up of a set of adapters translating different data representations

and possibly different internal APIs as needed. The same set of high-level LM semantics and

interfaces are expected to be provided independently of the inner AI framework. At the moment,

given the limited nature of the current AIaaS system prototype supporting only Tensorflow, this

functionality is not implemented and the AI Framework constitutes mostly an abstract entity.

4.2 Application Runtime

The Application Runtime implements all tasks that are common support of LMs and are

common to all TEACHING apps.

As stated in D4.1, the Application Runtime component manages the main execution workflow

of an AIaaS application. Its core functions include:

1. the instantiation of the underlying AI framework that hosts the learning modules;

2. instantiation and execution of the LMs of the application;

3. configuration of the AI data bus to correctly route the data stream to the relevant LMs.

4. manage the Application Logic, triggering and providing data to its function.

This implies several key interoperation features that depend on the assumptions made on a

specific implementation of the AIaaS support. We describe the design of the AR and then

discuss its current implementation assumptions and simplifications. Key differences set apart

interpreted, Python-based frameworks (i.e., TensorFlow and TensorFlow lite) from those based

on offline compiled code, like FastFlow or WindFlow are (they are both based on C++

compilation).

Instantiation of the AI framework – the initialization and allocation of resources for the AI

framework is influenced by the specific AI framework employed. Python code (Tensorflow,

Tensorflow-Lite) may rely on different HW and SW prerequisites being available, which must

be checked at initialization time. For compile-based frameworks the initialization shall check

that compiled version of all the LMs are available in executable form.

LM instantiation and execution – the AR needs to support LMs for:

• Instantiation – Setting up interpreted Python code for execution poses a lesser problem,

while executing assembling already-compiled code into applications requires the runtime

to either manage binary linking or dynamically loaded libraries of LMs. The execution

of LMs.

• Execution – computation in the LMs requires data. The runtime is in charge of bringing

data to the LMs and firing their execution, exploiting the routing information provided

by the Application Graph (currently implemented as a Python object). It shall be noted

that LMs have a dataflow-like semantics, where execution is possible when all the

needed data inputs are present. Dealing with real world data without risking stalls

requires a specific semantics defining which inputs are required, and how to deal with

missing optional inputs (e.g., keep previous data, send a predefined empty data). Two

extreme approaches are possible, the more general and concurrent one is to provide each

LM with the information needed to directly interact with the Data Brokering,

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 39 - September, 2021

implementing most communications and all nondeterministic input handling directly

within the LMs. In the diametrically opposite approach, the one that the AIaaS M18

prototype adopts, all Data Brokering interactions are instead kept within the Application

Runtime, which forwards the actual data to the LMs and implements the semantics of

non-deterministic control.

• (Hyper-)Parameter setup/update – several LMs sport a very different behaviours

according to their parameters. Choosing, forwarding, and possibly updating LM

parameter is a task that depends on AIaaS and LM implementation, but whose semantics

are deeply tied with the application ones.

AI data bus configuration – the AI data bus is intended as a low overhead mechanism for LM-

to-LM communication, skipping most or all needs of data conversion (as the LMs within a

single AIaaS are implemented on the same AI framework) and skipping unnecessary

synchronizations when the LMs cooperate in a straightforward way (e.g., simple pipelines).

Setting up this kind of communication channels is done by the AR at LM initialization.

Application Logic – citing from deliverable D4.1, “the Application Logic is a per-application

software module. It embodies those parts of the application which are in charge of handling all

special cases and actions that depart from the main workflow of the Application Runtime

(deployment, data collection, and data analysis)”. Due to the currently experimental status of

the Application Runtime as well as of the test applications, where each prototype is still

including all boilerplate code from the AIaaS, the Application Logic module is not yet defined

within the Application Runtime, whose initial design is still valid but will be implemented later

on, after the Application Translator and Application Runtime components are more mature.

4.2.1 Application Runtime Implementation

The current design, implemented in Python and stemming from the initial mock-up, is a

simplified version of the Application Runtime exploiting the initial assumption of Python-only

code and skipping modules which are yet in development, or are not useful for the first

prototype.

Specifically, the current implementation of the AR does not yet host a formally defined code

section to implement Application Logic. As stated before that specific sub-module is not

currently defined:

• Data messages from the various sources8 are pushed as data packets to the LM by the

AR, that is also in charge of getting back the results, both for ordinary data streams and

aperiodic (exception-like) ones.

• This also entails that the dataflow firing policy of the LMs is currently implemented

within the Application Runtime, and all interactions of the LMs with the Data Brokering

are mediated by the AR.

• The application start-up and initialization is defined within the application itself as

Python code as boiler plate (still evolving) code. As the features of the AR evolve and

settle down, the initialization code will move to the AR. The Application Translator

8As already described in D4.1 and detailed in this document in Sections Error! Reference source not found. and 4.5,

sources are actually identified by topics in the publish/subscribe networks providing local and global connectivity.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 40 - September, 2021

component will then parse application declarations and hook them into the appropriate

calls to the AR.

4.2.2 Data Flow and Activity Scheduling in the M18 Prototype

The Application Runtime moves the data from the sources (typically sensors) via the Data

Broker to the output(s) by following the routing instructions provided by the application

developer, and taking care that each module that has all incoming edges with data has in turn

its execution method called, e.g., node.train(x,y). This logic is currently implemented in the

function “tick” of the data_bus module according to the following pseudocode, which is

endlessly executed until the application stops/is stopped.

def tick():

 for each node in the routing graph:

 if the node has no incoming edges:

 # it is a source such as a sensor

 buffer[node] = node.read() # Returns a buffer of

readings

 else if all nodes (x) in the incoming edges (x)->(node) have

 data in their buffer:

 merge and sync the incoming data

 if node == teaching.output:

 return the data

 else:

 call the node with the merged data

 else:

 process this node later, when all inputs are available

4.3 Application Translator

The Application Translator software component is designed to receive a description of the

application (an Application Description document, see Section 3.3.3 and D4.1 Section 4.2.2)

that is mostly of declarative nature and relies implicitly on the set of LMs to be available in the

current AIaaS instance. The Application Translator then plays two roles:

1. it generates and configures the ready-to-be-executed instances of the LMs that are part

of the application, processing the declared application structure. This entails in turn:

• extracting the information about what LMs are needed by the app;

• identifying suitable LM implementations that are made available in the LM

library. When choosing the LM implementations the AT will consider both hints

provided by the application, and the features provided by the LM hosted by the

library, aiming at the best match according to the application-specified metrics

(e.g., absolute performance, power usage reduction, self-evaluated reliability

and so on);

• composing them in the way needed by the AI framework that is in use.

Depending on the use of Tensorflow, Tensorflow-Lite, WindFlow or other AI

frameworks, the LM composition can be just a matter of trivial textual

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 41 - September, 2021

juxtaposition of source code, it may require class instantiation and template-

based programming, or it may need runtime linking and dynamic library

provisioning).

2. it provides the application runtime component with the Application Logic elements as

derived from the Application Description. As the standard part of the Application

Runtime component (see previous section) is progressively extended and refined,

exceptions and special cases will emerge that AI applications need to manage in a code-

efficient way. The Application Translator will extract such snippets of code from the

declarative form of the application and pass them to the Application Logic sub-module

of the Application Runtime.

At the current stage of development, the M18 prototype is Python only and all applications are

still fully valid Python code, embedding all the AIaaS support code in their own classes. As

such, no translation is needed, and no special logic is extracted or generated. The current

Application Translator is a no-op class and both the Application Logic and the LM library not

yet in use within the prototype. In the next months these modules will be added, with a

progressive implementation of the two roles outlined in this section for the Application

Translator.

4.4 Data Ingestion / Brokering

As described in previous deliverable D4.1, all the components of the AIaaS architecture locally

communicate with each other via the Data Ingestion/Brokering component. This component is

built around the MQTT protocol, based on the Paho libraries9 available for both Python and

Java. Among the reasons for choosing MQTT are that it is a lightweight pub/sub protocol, well

supported by, and used on, embedded and mobile devices, as well as by conventional OSes (and

thus on Clouds). MQTT is thus a reasonable middle ground and a flexible gateway toward the

more powerful, expressive and extendable Kafka protocol that is employed in the overall

communication architecture, as we describe in this document and in deliverable D2.2. Figure

11, which we include from D2.2 for the sake of readability, shows the overall organization of

the TEACHING pub-sub network.

The AIaaS components (as well as, possibly indirectly, any learning modules instantiated

onboard the mobile node) can exploit MQTT both to communicate with each other and to access

the whole infrastructure. The modules are thus provided with mechanisms that via topic-based

addressing allow several forms of communication, including as elementary cases point to point,

broadcast, multicast, and gather communications. To actually send/receive data, that will be

transmitted through the broker, the AIaaS support components use various forms of the

subscribe and publish functions in the library.

4.4.1 Data Brokering Implementation

We describe the Python interface to the Data Brokering. The subscribe method accepts 2

parameters: a topic or topics and a QOS (quality of Service, with values within 0-2) as shown

below.

subscribe(topic, qos)

1. Method 1- Uses a single topic string. This is an example function call.

9 https://www.eclipse.org/paho

https://www.eclipse.org/paho

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 42 - September, 2021

client1.subscribe(“house/bulb1”,1)

2. Method 2- Uses single tuple for topic and specifies QOS level

client1.subscribe((“house/bulb2”,2))

3. Method 3- Used for subscribing to multiple topics, using a list of tuples

[(topic1,qos),(topic2,qos),(topic3,qos)]

client1.subscribe([(“house/bulb3”,2),(“house/bulb4”,1),(“h

ouse/bulb5”,0)])

The subscribe function returns a tuple to indicate success, as well as a message id which is used

as a tracking code.

(result, mid)

The MQTT broker/server will acknowledge subscriptions, which will then generate

an on_subscribe callback. The prototype of the callback function is shown below.

on_subscribe(client, userdata, mid, granted_qos)

The publish method accepts 4 parameters. The parameters are shown below with their default

values.

publish(topic, payload, qos, retain)

The payload is the message you want to publish, the topic is where you want to publish the QoS

is the reliability for the sent messages, the flag retain “on” allows the broker to store the last

message and the corresponding QoS for that topic.

client.publish("house/light","ON",”1”,”off”)

Before a client can start publishing or subscribing a simple initialization is required: creating

an instance, connecting to the broker, and finally publishing/subscribing to data, as in the

following example:

broker_address="192.168.1.184"

client = mqtt.Client("P1") #create new instance

client.connect(broker_address) #connect to broker

client.publish("house/bulbs/bulb1","OFF")

client.subscribe("house/bulbs/bulb1")

4.5 External Communication Interface

The external Communication Interface component allows local AIaaS modules to connect to

the network and communicate LM-generated/required data with Cloud services and other

instances of the AIaaS architecture. This module exploits a custom Kafka client which is

developed in the context of WP2 and is used as a bridge between the local MQTT broker (within

the Data Brokering component) and the global TEACHING pub/sub network. The

implementation of the Kafka client that we use in the mock-up and in the first implementation

of the AIaaS subsystem is coded in Java.

The bridge is configured with two lists of topics that are to be forwarded in both directions,

defining what kind of information is allowed to flow and thus providing isolation from the

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 43 - September, 2021

network to the local environment (the applications and sensor data within the AIaaS) as a basic

mechanism for keeping any kind of sensitive and private data local to a specific CPS.

The pub/sub mechanism provided by the External Communication Interface is supported within

WP2 at the platform scale, as it is shown in Figure 11 (which is also in D2.2). The left part of

the figure shows the (simplified) edge-based AIaaS architecture and its interaction with the

Kafka-based network. The centre and right portion of the figure show the deployment on top of

Near-Edge and Clouds of the networking and computation support.

The basic mechanism already provides the means to coordinate multiple instances of the AIaaS

support, either on Cloud or Edge and Mobile devices. It thus allows to implement federated and

distributed learning algorithms as a set of application deployed on multiple AIaaS instances.

The approach is exploited in the first release of WP4 demonstrators and described later in this

deliverable. Additional features are being studied and developed, which complement the

fundamental approach:

1. Providing the Kafka-MQTT bridge client with the ability to exploit specific message

fields to programmatically generate sub-topics on the receiving side, thus allowing for

sender-controlled message routing on the receivers CPS. This specific set of features

can help structure complex applications and implement distributed/federated learning

patterns.

2. Allowing LMs to directly interact via Kafka (e.g., skipping the Data Brokering and

MQTT). The approach is being studied as it represents a different trade-off that may be

interesting in the context of “core” instances of the AIaaS, that is deployed as services

on top of full-blown Cloud resources. Figure 11 on the right shows two examples of

LMs, one interacting via the bridge client, and another one directly via Kafka. Adding

such an interface can make more complex the model and implementations of LMs but

may allow to exploit Kafka-specific APIs to provide the LMs with advanced support

for distributed/federated learning.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 44 - September, 2021

Figure 11 Overall PUB/SUB Communication Organization spanning WP2 and WP4 (from D2.2)

4.5.1 External Communication Interface Implementation

We only provide a short description of the implementation for the sake of completeness. For

further technical details we refer the reader to deliverable D2.2, where the full description of

the bridge pub/sub client is provided.

The client is implemented in Java, and in current prototype is exploited via Java and Python. It

includes two connectors relaying messages from MQTT to the Kafka network and vice versa.

The Kafka Connect source connector reads data from MQTT and publishes them to Kafka,

while a Kafka Connect sink connector reads data from Kafka and publishes them to MQTT.

Both connectors act on a configurable list of pub/sub topic trees, that works as an allow list for

the data transfer by controlling the subscription operations of the bridge. The allow lists can

match either single topics or whole subtrees starting with a given topic.

The external communication interface was tested and verified during the integration activities

but is not always used in the experiments presented in this deliverable. Some tests rely on a

simpler interconnection of multiple AIaaS instances obtained by sharing the MQTT broker. The

MQTT architecture does not allow this kind of approach to scale to fully distributed,

geographically dispersed settings, but the choice eased separate development and debugging of

the AIaaS and LMs features.

4.6 Sensors API

The role of the Sensors API is to wrap the actual sensors that publish their streams to a message

broker in a callable API that can serve data upon request from whichever module asks for the

BROKER
MQTT

CONSUMER PRODUCER

KAFKA CLIENT

BROKER
KAFKA

SENSORS

LOCAL
LM

DATA
SENSORS

AI MODEL

MQTT TOPICS

AI MODEL
KAFKA
TOPICS

MOBILE
NODE

EDGE

REMOTE
LM

CORE

PRODUCER CONSUMER

KAFKA CLIENT

REMOTE
LM

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 45 - September, 2021

respective data. In order to implement this, the sensor API maintains a data buffer, which

collects data as they arrive at the message broker. The buffer keeps the latest messages from

each sensor. When a request to read data from the Sensor API is made the API returns the

respective set of latest messages and automatically empties the respective queue in order to

receive new messages from this sensor. This guarantees that the Sensor API provides the latest

readings for a sensor every time it is called.

Every time a new sensor is added to the TEACHING platform an instance of the SensorAPI is

instantiated in order to provide access to the sensor. The constructor (init) also defines the size

of the buffer. The open method creates an instantiation of a connection to the message broker

to the respective topic of each sensor.

The read method returns the content of the buffer and clears the buffer. Figure 12 shows the

basic operations scheme of the Sensors API in the AIaaS system. In order to provide room for

scalability, we assume that the drivers needed for each case are available in order for each

sensor to be able to publish on the MQTT bus, so these drivers can not be part of the AI-toolkit.

In our case, all the appropriate drivers have been developed to support our use cases and demo

applications.

Figure 12 Sensors API in the AIaaS system.

4.7 Local Storage API

The aim of the Local Storage API is to provide the other TEACHING components with stored

versions of the ML and AI models and also allow the long-term storage and reuse of newly

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 46 - September, 2021

trained models. Apart from models, the Storage API allows to store configurations, temporary

files and caches, to store results and any other custom binary object.

For this purpose, the Local Storage API maintains an SQLite (SQLiteStorage class) for storing

the various objects (instances of an Item class), which have an id, a name and description, a

storage type, a timestamp and the filename where the actual object is stored. The API provides

methods for adding items to the storage, retrieving them from the storage, getting their metadata

by id or name and also for removing items from the storage. Finally, it has methods that allow

to store the item to the disk or retrieve it from the disk, but this functionality has not been used

in the current mockup.

4.8 Decision Management Unit

The aim of the DMU is to provide an interface for communicating with the action units of the

vehicle.

 The only interfaced action unit so far is the driving profile selector, so the DMU provides

methods for connecting the DMU with the vehicle (constructor), setting a profile change

(method set_action), an asynchronous listener for consuming new signals that arrive from ML

modules, and a publish method for sharing the action with other modules. All the

communication with the DMU is directed through the message broker.

Currently, for the purposes of the mockup, we have developed a set of functions that have been

used in the demo app that sends the LM outputs to the message broker and that may implement

the application logic as well as the drivers needed on the autonomous vehicle side to be able to

receive the DMU commands and apply these commands to the vehicle itself.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 47 - September, 2021

5 AIaaS Learning Modules

In this section we provide a detailed list of planned LMs APIs. A Learning Module (LM) is just

a set of utilities to satisfy a specific learning goal. This means there is not pre-defined

abstraction level for all the modules which can provide out-the-box functionalities for classic

learning algorithms (e.g., RNN), specific tasks (e.g., Classification), learning paradigms (e.g.,

Continual Learning) as well as orthogonal learning features (e.g., Privacy-Preserving

Learning).

Learning modules can be divided in two main categories: 1) Standard LMs and 2) Support LMs.

The first type of learning modules are objects that can be instantiated in a computational graph

defining the application logic; the second are objects that can be instantiated independently

from the application logic and offer specific functionalities that are often used by Standard LMs

to address a specific need. In Table 6 the planned LMs to be offered in the AIaaS system are

reported.

Table 6 Table of Learning Modules available in the AIaaS

Name of the LM(s) Description Standard / Support LM

Time series RNN Learning module implementing

sequence learning and

classification capabilities in

teaching and based on standard

Recurrent Neural Networks

(RNN)

Standard

Time series RC-ESN Learning module implementing

sequence learning and

classification capabilities in

teaching and based on standard

Reservoir Computing techniques,

in particular Echo State Networks

(ESN)

Standard

Federated Learning Learning module for

implementing federated learning

applications: based on how it is

instantiated it can also work as the

centralized server in charge of the

synchronization.

Standard

Continual Learning This module offers basic

functionalities to the other LMs to

handle ever-changing data

distributions and update a

prediction model efficiently.

Support

Reinforcement

Learning

The Reinforcement Learning

module offers the main

Standard

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 48 - September, 2021

functionalities for developing

applications learning from sparse

rewards instead of direct

supervision.

Privacy-Preserving

Algorithms

The privacy preserving learning

module offer support

functionalities to augment the

privacy of the developed

applications and estimate

quantitatively the eventually

leaked privacy

Support

Dependable AI The dependable AI LM offers

basic functionalities to ensure the

dependability of the developed

applications

Support

Hyper-parameters

Selection

Hyper-parameters selection

utilities that ca be used black-box

functionalities by standard LMs.

Support

Anomaly Detection Basic support functionalities for

anomaly and cyber-attacks

detection

Support

The rest of section is organized as follows: Time Series RNN and RC-RNN are detailed in

Section 5.1 and 5.2, respectively. Section 5.3 describes more in detail the Federated Learning

LM while Section 5.4, Section 5.5 and Section 5.6 introduce three different support modules

namely the Continual Learning, Privacy-Preserving and Dependable AI ones. Section 5.7

details the Hyper-parameters Section support LM and Section 5.8 the Anomaly Detection one.

Finally, Section 5.9 present the current state of the design for the Reinforcement Learning LM.

For each Support or Standard LM the currently planned (or partially implemented) API is

described in more details. These APIs are not cast in stone: while they provide an important

first step supporting the mock-up AIaaS design and implementation, they may be subject to

change and further refinement with the progressive development of the AIaaS functionalities,

towards the preparation of deliverable D4.3.

5.1 Time-series RNN

This module provides a basic interface for deploying Recurrent Neural Networks into any

TEACHING application with a straightforward and automated interface. The main rational for

Standard LM is to be as agnostic as possible with respect to the Application Graph they are part

of. This approach favours modularity, reusability and easy-of-use. A RNN can be easily

instantiated to handle incoming time-series both for training and inference. The high-level API

provided in this LM allows even less-experienced software developers to tackle complex AI

tasks with ease.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 49 - September, 2021

5.1.1 Execution modes

This LM has two execution modes:

• Training: modality to train the underlying prediction model.

• Eval: modality to use the prediction model in inference only.

5.1.2 Input and output

The LM expects the data to be formatted as Numpy10 tensor data of the following format

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be

assumed as a sequence learning problem, a sequence classification problem otherwise. The

LM outputs the success or error states in the training mode (after each call), while it returns also

the predicted tensors (batch_size, target_size) for the eval mode.

5.1.3 List of API calls

Here we list the main API of the LM:

• init(n_layers, n_neurons, optimizer_hyperparams) -> State

• train(input_tensor) -> State

• eval(input_tensor) -> predicted tensor

5.1.4 Implementations of the LM

The implementation of this module is in Tensorflow for the training and eval modality, only

in eval for the Tensorflow Lite implementation. Both implementations can work on CPU and

GPUs enabled hardware.

5.2 Time-series RC-ESN

The Time-series RC-ESN operates similarly w.r.t. the Time-series RNN LM but is

implemented differently. In particular it uses Echo State Networks (a particular family of

Reservoir computing techniques) that are generally more efficient and indicate than RNN for

constrained edge devices.

5.2.1 Execution modes

As for the Time-series RNN LM , this LM has two execution modes:

• Training: modality to train the underlying prediction model.

• Eval: modality to use the prediction model in inference only.

5.2.2 Hyperparameters

At setup (set):

• num_recurrent_units_per_layer: int; constraints: x > 0; default: 100

10 https://numpy.org

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 50 - September, 2021

• num_layers: int; constraints: x > 0; default: 1

• input_scaling: float; constraints: x > 0; default: 1.0

• recurrent_scaling: float; constraints: x > 0; default: 1.0

• bias_scaling: float; constraints: x > 0; default: 1.0

• leaking_rate: float; constraints: 0 < x <= 1; default: 1.0

At runtime (set/get)

5.2.3 Input and output

The LM expects the data to be formatted as Numpy tensor as follows:

• Input: tensor of shape (batch_size, sequence_length, input_features_size)

• Target: tensor of shape (batch_size, sequence_length, target_size). If sequence_length

is None, it is assumed that the target refers to the whole sequence (typical case for

sequence classification). Otherwise, sequence_length must be equal to the

corresponding dimension in the input: in this case, to each time step corresponds a

target.

• Target_mask: optional mask of shape (sequence_length) that can be used to exclude

some time steps from the target tensor. This is required for time-series for which only

partial ground-truth data is available.

The LM outputs the training loss in the training mode (after each call), while it returns also

the predicted tensors (batch_size, target_size) for the eval mode.

5.2.4 List of API calls

Here we list the main API of the LM:

• init(network_hyperparams, optimizer_hyperparams, return_sequences=False,

return_state=False, masking_value=None, optimizer?)

o Network_hyperparams: num layers, architecture (e.g., gated), readout type, …

o Masking_value: if not None, it is the value used for masking the target tensors

• train(input_tensor, target_tensor, initial_state?, stateful)

o stateful (bool): whether the network should maintain an internal state across

calls (True), or instead the state is reset at each call (False).

o optimizer: Optimizer object, or string “classification”/”regression”

• eval(input_tensor, initial_state?, stateful) -> predicted tensor

5.2.5 Implementations of the LM

The implementation of this module is in Tensorflow for the training and eval modality.

If the readout layer is linear and the optimizer is a closed-form optimizer, training is supported

also in Tensorflow Lite. Both implementations can work on CPU and GPUs enabled hardware.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 51 - September, 2021

5.3 Federated Learning

This learning module provides the core functionalities for distributed and federated learning

with both edge and server nodes functionalities. More about the usage of this LM can be found

in the Federated Learning use-case mockup of Section 6.3.4. If instantiated as an edge node this

LM expects to receive an initialization model, updates it locally and re-sends it on the shared

MQTT data broker. Otherwise, if implemented as a server node, waits for locally trained

models, merge them and re-sends them onto the network.

5.3.1 Execution modes

This LM has two execution modes:

• node: main modality for the local updating of the shared model on the edge.

• Server: if instantiated in server mode, the federated learning LM acts as centralized

server in charge of fusing and distributing trained models.

5.3.2 Input and output

The LM expects the data to be formatted as Numpy tensor data of the following format

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be

assumed as a sequence learning problem, a sequence classification problem otherwise.

5.3.3 List of API calls

Here we list the main API of the LM:

• init(hyper_params) -> State

• train(input_tensor) -> State

• eval(input_tensor) -> predicted tensor

• add_model(trained_model) -> State

• merge_models() -> State

• get_merged_model() -> model

5.3.4 Implementations of the LM

The implementation of this module is in Tensorflow for the training and eval modality, only

in eval for the Tensorflow Lite implementation. Both implementations can work on CPU and

GPUs enabled hardware.

5.4 Continual Learning

This support learning module provides basic utilities for continual learning that can be used by

the other learning modules. This module is focused on offering basic replay mechanisms that

can be used agnostically by almost any other learning algorithm.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 52 - September, 2021

5.4.1 Execution modes

This LM has one execution modes:

• External Memory Management: modality to handle an external memory buffer to be

used for replay.

5.4.2 Input and output

The LM expects the data to be formatted as Numpy tensor data of the following format

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be

assumed as a sequence learning problem, a sequence classification problem otherwise.

5.4.3 List of API calls

Here we list the main API of the LM:

• init(ext_mem_size) -> State

• update_memory(input_tensor) -> State

• get_memory_buffer() -> tensor_buffer

5.4.4 Implementations of the LM

The implementation of this module is in Tensorflow for the training and eval modality, only

in eval for the Tensorflow Lite implementation. Both implementations can work on CPU and

GPUs enabled hardware.

5.5 Privacy-preserving

Training routines for Privacy-aware Neural Networks. Privacy-aware training algorithms keep

track of the privacy budget during training and modify the model’s updates to guarantee the

privacy.

5.5.1 Execution modes

This LM has two execution modes:

• Training: private training of a specified architecture given a dataset.

• Eval: may not be needed if you use other modules at evaluation time.

5.5.2 Input and output

The LM expects the data in the same format as Section 5.1.

The LM expects the data to be formatted as Numpy tensor data of the following format

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be

assumed as a sequence learning problem, a sequence classification problem otherwise.

The LM outputs the success or error states in the training mode (after each call), while it

returns also the predicted tensors (batch_size, target_size) for the eval mode.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 53 - September, 2021

5.5.3 List of API calls

Here we list the main API of the LM:

• init(n_layers, n_neurons, optimizer_hyperparams) -> State

same arguments as 4.2, plus privacy-specific hyperaparameters: noise_multiplier,

l2_norm_clip, microbatches

• train(input_tensor, privacy_budget) -> loss, privacy_budget

privacy_budget is a tuple <epsilon, delta> corresponding to the model’s DP

coefficients

• eval(input_tensor) -> predicted tensor

5.5.4 Implementations of the LM

The implementation of this module is in Tensorflow for the training modality. Privacy-aware

training is not supported by Tensorflow lite (possible future work). Eval may be supported also

for Tensorflow-Lite (and any other architectures supported by the AI Framework). Both

implementations can work on CPU and GPUs enabled hardware.

5.6 Dependable AI – Adversarial Robustness

Dependability routine that evaluates the adversarial robustness of a neural network.

5.6.1 Execution modes

This LM has one execution modes:

• Eval: given a model a list of samples, find the minimum amount of noise sufficient to

perturb the network’s output outside the desired bounds.

5.6.2 Input and output

The LM expects the data to be formatted as Numpy tensor data of the following format

(batch_size, input_features_size, target_size). If target_size equals None, the problem will be

assumed as a sequence learning problem, a sequence classification problem otherwise.

The LM outputs the minimum perturbation necessary to make predictions outside the given

bounds.

5.6.3 List of API calls

Here we list the main API of the LM:

• init(d1, d2, d3) -> distances of the three boundaries.

• eval(model, samples) -> minimum perturbation.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 54 - September, 2021

5.6.4 Implementations of the LM

The implementation of this module is in Tensorflow and it supports CPU and GPUs enabled

hardware.

5.7 Hyper-parameters Selection

The “Hyper-parameters Selection” learning module provides all the utilities to simplify the

hyper-parameters selection process. In order to automatize “learning” in every TEACHING

application and provide more transparent API to the end users (i.e. even inexperienced coders),

being able to automatically determine the more effective set of hyper-parameters becomes

essential. This module offers a simple way to return the best set of parameters given a specific

search policy and a set of possible hyperparameters.

Further improvements of this LM may expand current features by providing an even higher-

level API that automatically determines those parameters and the search policy based on the

specific learning algorithm used and the application context.

5.7.1 Execution modes

This module can be used only for training and as a support LM, i.e. it cannot be directly

instantiated in a routing graph of an application but should be used directly by another learning

module that exploits its features.

5.7.2 Input and output

The inputs to this LM are essentially a tensor “grid” containing the set of the possible

hyperparameters and a string “policy” with the specific search policy to be used.

5.7.3 List of API calls

The list of methods available for this LM are the following:

• init() -> instance of the LM.

• get_parameters(grid, policy) -> set of best-performing hyper-parameters.

5.7.4 Implementations of the LM

The implementation will be in pure Python, eventually relying on external Python libraries and

the training utilities provided by the other learning modules.

5.8 Anomaly Detection

This module provides basic utilities for training a Long Short-Term Memory Autoencoder

(LSTM-AE) for anomaly detection tasks. The model learns from normal data instances.

Evaluation or inference is applied on mixed data containing both normal and anomalous

instances. The module offers access to the underlined trained model functionalities.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 55 - September, 2021

5.8.1 Execution modes

This LM has two execution modes:

• Train: modality to train the underlying prediction model.

• Eval: modality to use the prediction model in inference only.

5.8.2 Input and output

The LM expects the data to be formatted as Pandas dataframe:

• Input: a dataframe with normal data of shape (sequence_length, input_features_size,

target_size) for training, a dataframe with data containing anomalies of shape

(sequence_length, input_features_size) for evaluation or inference. A config.py file for

training with a dictionary that contains the following arguments:

o data.path_normal: the path to a dataframe that only contains normal instances.

o data.path_anomaly: the path to a dataframe that contains both normal and

anomalous instances, used in evaluation.

o data.time_steps: number of timesteps to split the data into subsequences.

o data.ground_truth_cols: None if target columns are not included in the

dataframe, otherwise a list with the target’s feature names.

o train.batch_size: batch size for training.

o train.epochs: training epochs.

o train.val_subsplits: percentage of data to use for validation.

o model.storage: path to store the serialized model.

• Output: 1) Training mode: A serialized model, and a minmax scaler object. 2) Inference

mode: the initial dataframe with an additional ‘pred’ column with 0 for predicted normal

and 1 for predicted anomaly.

5.8.3 List of API calls

Here we list the main API of the LM:

• init(CFG) -> State (CFG is a configuration dictionary that contains the architecture

and training parameters)

• load_data() -> State

• train() -> State

• eval() -> predicted tensor

5.8.4 Implementations of the LM

The implementation of this module is in Tensorflow for the training and eval modality.

Currently, both implementations work on CPU enabled hardware.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 56 - September, 2021

5.9 Reinforcement Learning

In order to train a Reinforcement Learning model, it is first necessary to decide on the algorithm

to use and then define the input, output, states and rewards for the agent. We decided to use the

Advantage Actor Critic algorithm (Figure 13), aiming to train an agent that would learn to

choose the appropriate driving profile, per driver, based on various input collected through the

Sensor API. The actor critic algorithm consists of two networks (the actor and the critic)

working together to solve a particular problem. The actor network chooses an action at each

time step and the critic network evaluates the quality or the Q-value of a given input state. As

the critic network learns which states are better or worse, the actor uses this information to teach

the agent to seek out good states and avoid bad states.

The input provided to the RL model at each step is related to the stress level and excitement

level of the driver, the state of the road (e.g., taken from a camera sensor) and the state of the

car as given by the accelerometers and other sensors. For the RL model it is also necessary to

define the set of possible actions and quantify the reward resulting from the action. For this

purpose, we define three driving profiles (conservative, normal and aggressive) which may

correspond to different top velocity, acceleration/deceleration and steering limits. We

consequently assume that the RL chooses the best profile at each moment based on the current

state of the vehicle and the driver (input). Depending on the status of the driver at the next step

(i.e., stress and excitement) we compute the reward for the chosen action and proceed to the

next training iteration.

Our network has two output layers. The first output layer that corresponds to the Actor neural

network provides three output values (Action) and uses Softmax as its activation function. The

three values are the probabilities for each possible Action (driving mode) that the model can

perform. The second output layer that corresponds to the Critic neural network provides an

output, a Value that is the sum of all expected future rewards. During model training we employ

the output of the actor model and the action with the highest probability is chosen each time

(i.e., becomes the suggested Action). The action selected by the actor model was translated by

the system to a choice of driving profile that is forwarded to the DMU (at inference time).

Figure 13 A high-level demonstration of the flow of state observations and reward signals between the

algorithm and the environment in the Actor Critic RL architecture.

At each step, a reward was generated for the action taken (the chosen profile), and this reward

is computed using a reward function that jointly examines the stress and excitement values of

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 57 - September, 2021

the driver. The aim is to keep driver’s stress at low levels and driver’s excitement at high levels.

After applying the driving profile, a new package of observations was retrieved from the

environment, in order to feed the model again, and the same process is repeated continuously.

In parallel, after each execution step, the observations, actions and rewards are kept in a buffer

until the requested batch size (500 samples) is covered. The batch is then used for model

training. The model was built in TensorFlow v2.0 with Keras v2.0. Two loss functions were

also used, one for each model and another for backpropagation. For the actor's neuron the loss

function was the product of the logarithm of the probability of the action, which has been

selected earlier during the data collection stage, times the difference between the total reward

and the reward of the action. Huber loss was used for the critic's neuron. In backpropagation,

the sum of the total values of the loss function from each network was used as the loss function.

Finally, the Adam optimizer was used with a learning rate of 1e-4. The architecture of the

models used is shown in the diagram below (Figure 14).

Figure 14 The architecture of the developed RL models.

5.9.1 Execution modes

• Eval: given a set of parameters expected as an input by the model, predicted the

appropriate driving profile that fits driver’s state (stress & boredom) and vehicle status.

5.9.2 Input and output

The LM expects the data to be formatted as follows:

1. Input: A set of state measurements that comprise vehicle sensor records, as

well as the estimated user stress and boredom levels. These input parameters include:

1.1 y_acceleration: The vehicle acceleration on the y-axis

1.2 gyro_z: The angular velocity on z-axis

1.3 velocity: Vehicle’s velocity ox x-axis

1.4 speed_limit: The speed limit as it is defined in the vehicle’s environment (i.e.

by traffic signs)

1.5 stress: Driver’s stress as it comes from the stress recognition module

1.6 boredom: Driver’s estimated boredom based on the current driving style

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 58 - September, 2021

2. Output: The predicted driving mode that best matches the driver’s style as

predicted based on the above factors.

5.9.3 List of API calls

Here we list the main API of the LM:

• init(self, inference_mode , num_inputs , num_actions , steps_per_episode , gamma,

 num_hidden , learning_rate , max_finish_score)

• load(pretrained_model_h5_file)

• save(h5_filename_to_be_saved)

• eval(model, states) -> preferred driving mode.

5.9.4 Implementations of the LM

The implementation of this module is in Tensorflow for the eval modality. The training

modality has been implemented and tested in simulation environment only (Carla) since the

sensor infrastructure is not yet fully deployed. Both implementations can work on CPU and

GPUs enabled hardware.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 59 - September, 2021

6 AIaaS Integration

This section is dedicated to illustrating the integration of the AIaaS mockup. In particular,

Section 6.1 presents the main software organization, Section 6.2 describes the dependencies

and the mockup integration, Section 6.3 describes some use cases, and finally Section 6.4 two

demo applications that are fully implemented in Python. We will see how an application

developer can declare an application that uses the TEACHING AIaaS framework by providing

a few instructions in a Python file in a fast and simple fashion even to solve complex AI tasks.

The reference coding project for the "Artificial Intelligence as a Service (AIaaS) software

infrastructure for CPSoS" WP4 of the TEACHING project is the AI-Toolkit11. The AI-Toolkit

is a set of code utilities and services at the core of the AIaaS system. It has been mainly tested,

installed, and used on macOS, Linux distributions and on Jetson Nano.

6.1 AI-Toolkit Organization

This subsection is focused on the organization and the structure of the toolkit. The code

repository is a private GitLab instance for the TEACHING project. GitLab is a web-based

DevOps lifecycle tool that provides a Git repository manager providing wiki, issue-tracking

and continuous integration, and deployment pipeline features, using an open-source license,

developed by GitLab Inc.

The current project structure visible in the GitLab repository is presented below with a brief

description of each main module:

• teaching: Main AIaaS package with key learning modules and components. The

structure of this module is the following:
| teaching
 |- components

 |- ai_framework

 |- application_runtime

 |- application_translator

 |- data_brokering

 |- dmu

 |- ext_common_interface

 |- local_storage

 |- sensor_api

 |- learning_modules

 |- continual_learning

|- cybersecurity

|- federeted_learning

|- hyperparams_selection

|- privacy_preserving

|- reinforcement_learning

|- reservoir_computing_esn

|- rnn

|- sum

lm_base.py

11 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/tree/master/#ai-toolkit. The repository is currently private and

only accessible by the consortium partners. A zip file containing the latest AI-Toolkit software version will be submitted

together with this document for completeness.

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/tree/master/#ai-toolkit
https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit/-/tree/master/%23ai-toolkit

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 60 - September, 2021

• applications: Applications Demo implemented on top of the mockup. Beware that some

of the logic has been hardwired and implemented independently from the true

components and learning modules. The structure of this module is:

|- applications

|- driving-mode-personalization

|- reinforcement learning

|- sinwave

|- stress

• tests: Tests for the integrated mockup and the individual components / learning

modules. Below its structure:

|- tests

|- DepUseCase

|- FederatedLearning-useCase

|- SequenceClassificationCL

|- unit_tests

README.md

integration.py

• utils: Additional materials not strictly necessary for the current AIaaS Toolkit, but that

might be useful in the future. Below its structure:

|utils

|- esn_lite

|- pseudocode_ideas

Figure 15 The GitLab AI-Tookit landing page.

6.2 Setup and Mockup Integration Script

This subsection presents everything we need to use the AI-Toolkit and in particular the mock-

up integration script. The latter is used to check if all dependencies are installed and in general

if the setup was successful. We can divide the setup into four parts called prerequisites,

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 61 - September, 2021

installation, requirements (or dependencies) and finally the verification via mock-up integration

script.

Prerequisites – The main requirements for the execution of the integration script are mainly

two:

• Python: It is recommended that you use Python 3.6 or greater, which can be installed either

through the Anaconda package manager, Homebrew, or the Python website.

• Package Manager: to install the AI-Toolkit, you will need to use one of two supported

package managers: Anaconda or pip. The latter is the recommended package manager as

it will provide you in a fast way AI-Toolkit dependencies in one. For Python3 use pip3.

Installation/Clone Repository - Currently, AI-Toolkit source code can be found in GitLab,

and it is possible to clone it via SSH12 or HTTP13.

Requirements - Here, pip3 is our recommended package manager since it installs all

dependencies using the follow command line pip3 install -r requirements.txt

Verification - To ensure that the AI-Toolkit works in your system and the dependencies have

been installed correctly, it is possible to run the test Python scripts. Such execution represents

the integrated mockup that can be run on a Jetson Nano and any Linux desktop distribution.

To run the code, launch a test from the project directory in two different terminals that

simulate two devises:

python3 -m tests.integration

python3 -m teaching.components.sensors_api.virtual_sensors_publisher

The Integration script tests the proper working of the interfaces among components and

modules. The virtual_sensors_publisher is a script implementing 5 virtual sensors,

regularly publishing readings to the MQTT broker. Here sensors are eda (sensors/eda). The

second script initializes a new application, defines the data sources (sensors/eda), creates local

storage, defines the lm and routing like below

Define routing

app.route([

(eda, teaching.output, {}),

(target, lm, {'type': 'label', 'resampling': {'freq': 50, 'buffer_size':

1000}}), # 'resampling': Hz, 'buffer_size': ms

(eda, lm, {'resampling': {'freq': 50, 'buffer_size': 1}}),

(lm, teaching.output, {}) # Exit point

])

The output is simply a continuously updating data of the sensors represented by two plots.

12git@teaching-gitlab.di.unipi.it:v.lomonaco/ai-toolkit.git
13 https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit.git).

https://teaching-gitlab.di.unipi.it/v.lomonaco/ai-toolkit.git

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 62 - September, 2021

6.3 Mockup Use Cases

In this section, we describe examples of possible use case mockups scenarios that the AIaaS

system may enable, focusing (among many others) on the following:

• Sequence Classification with Continual Learning (described in Section 6.3.1)

• Dependability (described in Section 6.3.2)

• Reinforcement Learning (described in Section 6.3.3)

• Federated Learning (described in Section 6.3.4).

The examples have been designed to cover as many AIaaS planned functionalities as possible,

as well as covering the main TEACHING use cases. At this point of the project, they are a

demonstration of the successful integration of the different AI-Toolkit components, the

concrete use of the learning module for practical applications and finally some typical

workflows of a generic applications leveraging the proposed platform.

6.3.1 Sequence Classification with Continual Learning

The first use case scenario is sequence classification with or without the Continual Learning

integration, to show the usability of both learning modules in the AIaaS system.

The goal of this use case is to use the RNN-RC learning module for a stress recognition demo

application using the Continual Learning support LM for the external memory management,

i.e. the basic functionalities needed to handle an external memory buffer to be used for

experience replay, a basic technique to reduce forgetting in neural networks as discussed in

Section 2.3. However, for the sake of this first mockup implementation, a pretrained ESN is

used only for inference. Note that the main difference with respect to to the application

described in Section 6.4.1 is the use of the support CL learning module to enable ESN model

adaptation on non-stationary data streams.

To run the code, launch SequenceClassificationCL from the project directory in two different

terminals that simulate two devises.

python3 -m tests. SequenceClassificationCL.scCL

python3 -m teaching.components.sensors_api.virtual_sensors_publisher

Parts of the code that implements the use case application are shown below. The general schema

is to initialize a new application and define the data sources, then define the components, create

local storage and define routing graph as follows:

Define routing

app.route([

(eda, teaching.output, {}),

(target, lm, {'type': 'label', 'resampling': {'freq': 50, 'buffer_size':

1000}}), # 'resampling': Hz, 'buffer_size': ms

(eda, lm, {'resampling': {'freq': 50, 'buffer_size': 1}}),

(lm, teaching.output, {})

Exit point])

Here, we have an additional virtual sensor named “target” which emits target labels for the task.

By annotating the (target)->(lm) edge with type=label, we inform the framework that the data

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 63 - September, 2021

flowing through that edge should be used for supervised learning. Within the function

tick()in Data Bus module, the framework can have access to the labels.

After the runtime of the application is started by calling

asyncio.create_task(app.run()), the two results can be obtained by calling

app.output(). As time goes on, the results are accumulated into buffers which are emptied

as soon as a new output is requested by calling app.output()as presented in Section 6.4.1.

This use case shows the possibility to run the applications of sequence classification even with

the presence of the CL module.

6.3.2 Dependability

The second use case choice is for the dependability scenarios. We decided to use the adversarial

robustness method and ESN as the neural network model. The purpose of this use-case is to

show the possibility of using the Dependability LM and pass not only data from the sensors,

but also NN models by passing them through the data brokering module.

To run the code, launch DepUseCase from the project directory in two different terminals that

simulate two devises:

python3 -m tests.DepUseCase.dep_pub pla

python3 -m tests.DepUseCase.dep_sub

Parts of the code that implements the use case application are shown below. The general schema

is to initialize a new application, define the component and set some application parameters.

For the sake of the mockup we limit ourselves to a simpler version of the scenario, in the case

in which only a new model arrives and its robustness is evaluated. The user can simply execute

the application using the following code:

if __name__ == "__main__":

loop = asyncio.get_event_loop()

result = loop.run_until_complete(main())

with the main code being:

async def main():

loop = asyncio.get_event_loop()

loop.create_task(app.run())

With this use case demo, we illustrate the possibility to use the Dependability LM and

evaluate arbitrary NN models such as ESNs.

6.3.3 Reinforcement Learning

In order to showcase the usability of the Reinforcement Learning LM in the context of the

AIaaS framework, we implemented a use-case scenario through a demo application that

demonstrates its usage. In this use case, the goal is to use a pretrained RL model in the inference

stage, feed the model with a set of 6 sensor measurements from an autonomous vehicle and the

driver (acceleration on the y axis, gyroscope, velocity, speed limit, excitement level of the

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 64 - September, 2021

driver, electrodermal activity of the driver) and get the most suitable driving profile of the

autonomous vehicle (cautious, normal, sport) as the predicted output of the model.

Parts of the code that implements the use case application are shown below. The following code

block depicts the instantiation on the sensor sources and the routing of these data sources to the

RL LM.

y_acceleration = MqttSensorDevice("sensors/carla/acceleration_y")
app.add_data_source(device=y_acceleration)

gyro_z = MqttSensorDevice("sensors/carla/gyro_z")

app.add_data_source(device=gyro_z)

velocity = MqttSensorDevice("sensors/carla/velocity")
app.add_data_source(device=velocity)

speed_limit = MqttSensorDevice("sensors/carla/speed_limit")
app.add_data_source(device=speed_limit)

excitement_sensor = ExcitementSensorDevice()
app.add_data_source(device=excitement_sensor)

eda = WesadSensorDevice()
app.add_data_source(device=eda)

After creating the RL model instance we route the previous sensor sources into the learning

module and the output of the model to the output of our application.

rlmodel = RL_Model()

rlmodel.load(path='data/models/RL_model_episode_470.h5')

app.add_module('rl', rlmodel)

app.route([

 (y_acceleration, rlmodel, {}),

 (gyro_z, rlmodel, {}),

 (velocity, rlmodel, {}),

 (speed_limit, rlmodel, {}),

 (excitement_sensor, rlmodel, {}),

 (eda, rlmodel, {}),

 (rlmodel, teaching.output, {}) # Exit point

])

And finally, we get the predicted driving mode as an output of the application:

rlmodel_output = await app.output()

print('RL LM output: Driving mode {}'.format(rlmodel_output[0]))

This output in this use case scenario is not forwarded to any other module or component since

this use case only focused on demonstrating the functionality of the RL module but in a more

complex application, like the one demonstrated in the section that follows (Section 6.4), this

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 65 - September, 2021

output could be routed to another LM, a Decision Making Unit that implements any application

specific logic etc.

6.3.4 Federated Learning

As mentioned in Section 2.2, Federated Learning enables distributed devices to collaboratively

learn a shared prediction model while keeping all the training data on the device, decoupling

the ability to do machine learning from the need to store the data in the cloud. TEACHING

apps using our AIaaS can leverage the Federated Learning LM to implement it in a federation

of hardware agnostic devices.

To show the use of the Federated Learning LM we developed a simple use case with one

server and two clients. For simplicity a pre-trained ESN model is used. However, please note

that the Federated Learning LM is agnostic to the specific ML model used.

Figure 16 A graphical view of the Federated Learning Use Case

A graphic view is shown in Figure 16. The server initializes the global model (1) and passes it

to clients (2). Every client trains the model with local data (3) and then sends the new local

model to the server (4). Then the server aggregates the two models (5) and sends the new global

model.

All this work is transparent to the user in our framework and needs only to initialize a new

application, define the component, set a model, and add LM to the app object. Please note that

the user can setup the server node simply as an instance of the AIaaS system, just by instructing

correctly the Federated Learning module about it specific execution mode (as a server or as a

worker) as shown below:

"Setting for user"

app = teaching.init()

Init a new application

app.metadata = True

model no data from sensor!

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 66 - September, 2021

app.param['use_case'] = 'fl'

app.param['device'] = 'nodes'

set a NN model and add LM in appesn_

pub = ESN(os.path.realpath(os.path.join(__file__,

'../../../applications/stress/','data/models/esn_stress_recognition.pkl')))

node = NodeFL(esn_pub)

app.add_module(app.moduleName, node)

The Application module routes the workflow of the user’s application and the Data Brokering

module manages the communication between the different devices using MQTT protocol

behind. To run the code, launch a FederatedLearning-useCase code from the project directory

in three different terminals (two as nodes - with one argument as input n1 or n2 - and one as

server):

python3 -m tests.FederatedLearning-useCase.fl_nodes n1

python3 -m tests.FederatedLearning-useCase.fl_nodes n2

python3 -m tests.FederatedLearning-useCase.fl_server

The FL demo use case demonstrates how simple it is to build real-time AI applications by using

the AIaaS framework even with complex remote infrastructure and learning approaches.

6.4 Demo Applications

In this section we describe two applications leveraging the AIaaS framework. The integration

script is needed to check if the setup was done correctly while the mock-ups highlight the

possible use-cases and general workflow of an application. Here the focus is on two specific

uses of the AIaaS system for two demo applications very relevant to TEACHING. Section 6.4.1

illustrates the stress recognition demo app, while Section 6.4.2 shows the autonomous driving

personalization module.

6.4.1 Stress Monitoring

The stress recognition demo application showcases the ability of the AIaaS framework to easily

allow the construction of applications by interactions of basic components.

In the stress recognition demo application, the goal is to recognize the level of stress of a user

from physiological sensors. For the purposes of this demo, we limit ourselves to the use of an

electrodermal activity (EDA) sensor for input. The output is simply a continuously updating

measure of the current level of stress.

The actual data used for the demo does not come from a real EDA sensor. Instead, we have

used the data included in a publicly available dataset in the literature (WESAD) in order to

simulate a real-time stream. We refer to the producer of this data as a virtual sensor.

The application uses a pretrained Echo State Network for inference, so the main components

of the applications are the input sensor (eda) and the Echo State Network (lm). Given these two

components, the framework allows the definition of a stress recognition application simply by

declaring a routing graph:

app.route([

 (eda, teaching.output, {}),

 (eda, lm, {}),

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 67 - September, 2021

 (lm, teaching.output, {})

])

Each item in the routing list defines an edge in a computational graph. In this case, the data

emitted by the sensor is fed to the lm (i.e., to the ESN) and to the output of the application

(teaching.output) for visualization. The output of the ESN is fed directly to the output of

the application.

After the runtime of the application is started by calling

asyncio.create_task(app.run()), the two results can be obtained by calling

app.output(). As time goes on, the results are accumulated into buffers which are emptied

as soon as a new output is requested by calling app.output().

The stress recognition demo application demonstrates how simple it is to build real-time AI

applications by using the AIaaS framework.

6.4.2 Autonomous Driving Personalization

We decided to use the Reinforcement Learning method with the Advantage Actor Critic

algorithm, aiming to train an agent that would learn to choose the appropriate driving profile,

per driver, based on his stress and excitement values. To do this, we used an ANN model to

simulate the stress and excitement values based on the vehicle condition, and we modified

CARLA's Behavior Agent. The Behavior Agent has been modified in such a way that

dynamically during the execution of a route one can change the driving profile between three

options: conservative, normal and aggressive.

To apply the Reinforcement Learning method to our experiments, we made the necessary

modifications to CARLA 's execution script. A new script was created, which placed the vehicle

randomly in CARLA's map and at the same time activated the autopilot giving it a random

route. The same script repeated the same process each time the experiment was reset. At the

same time, in order to simulate the different drivers, in each reset of the experiment, the initial

profile of the Behavior Agent was randomly selected, but at the same time the driver profile

was related to how anxious and excited he was depending on the condition of the vehicle. This

way, we were able to give the agent as many new scenarios as possible with different drivers

and different routes so that he could gain a good experience of the world.

In order to train the RL model for the driving personalisation task, we employed the CARLA

driving simulator environment (https://carla.org/), which allowed us to instantiate an

autonomous vehicle that is operated by the CARLA parametric auto-pilot (Figure 17). The

parametric auto-pilot allows to set the various driving parameters (e.g., maximum speed,

maximum steering angle, acceleration or deceleration etc) and achieve different driving profiles

that correspond to different autonomous vehicle driving modes. In addition, we are able to

simulate several vehicle sensors that measure the speed, acceleration and rotation of the vehicle

on all axes (which implicitly affects the passengers’ stress), and use them as input to the RL.

https://carla.org/

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 68 - September, 2021

Figure 17 The autonomous vehicle used in the Carla simulator, operated by the parametric auto-pilot that

was deployed for testing the autonomous driving personalization algorithms and developing the relative

demo application to showcase the results.

This way we were able to give the agent as many new scenarios as possible with different guides

and different routes so that he could gain a good experience of the world. The condition for

resetting the experiment was to complete a path, fail to complete it, or collect enough data for

the batch. The sensors selected to be given to the model were the horizontal acceleration y, the

vertical acceleration x, the angular velocity on the z-axis, the vehicle speed, the speed limit of

the road moving the vehicle as well as the stress and excitement values. The choice of these

sensors arose from the experiments of previous chapters and it was decided that they give a

very good picture of the current state of the world and the respective driver.

During the training phase, 500 observation batches were created. The observations are used to

calculate loss functions and update weights. Finding the right reward function was a challenge

since a wrong choice may result in strange model behaviours (e.g., always selecting a profile

that minimizes stress independently of the excitement or the inverse). Finding the right learning

rate was also difficult. With each unsuccessful fine-tuning experiment taking 4 to 5 hours and

the final successful train of the model lasting 24 hours, we finally got a model that switches

driving profiles during driving taking into account the stress and excitement in tandem. The

model has been trained on an AMD Ryzen 9 5900X CPU (12 cores) with 32 GB RAM and an

RTX 3070 OC 8GB graphics card. The most significant delay in the experiments was due to

the need to make all training epochs in real time with Carla's virtual world, so the training hours

correspond to real driving hours. In total the model was trained for about 900 episodes and the

training process was interrupted when it was considered that the model did not improve further.

The final model chosen is that of 470 episodes.

In order to evaluate our model, we employed the CARLA autopilot as a baseline and the stable

choice of a driving profile during the whole route. We also compared against a method that

randomly changes driving profiles during the route. We repeated the experiment for 5 random

routes and the results show that with the proposed method we had a decrease in stress between

4 and 15% and an increase between 1 and 15% in excitement.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 69 - September, 2021

With respect to the above experiments and the framework units as described in Section 3 and

5, we also developed a TEACHING demo application that demonstrates the integration of

various parts of the AIaaS platform. For this purpose, the CARLA driving simulation

environment has been installed and configured in order to allow integration with the

TEACHING framework. In essence, this application uses the communication among the

different components to flow the extracted user stress levels coming from the stress recognition

module to feed the RL module along with various vehicle sensor data to predict the appropriate

autonomous vehicle driving profile that should be used by the vehicle’s agent for personalizing

its behaviour based on the user’s predicted profile. In addition to the above, and in order to

facilitate the demo app implementation and test the whole TEACHING pipeline, the vehicle

sensors from CARLA have been wrapped up and delivered through a message brokering

service, a module that simulates user stress and user excitement based on the vehicle behavior

(speed, acceleration, etc.) has been developed in order to provide input for the RL module and

allow to train the RL model.

An example of the routing used in this demo application to flow the information among the

various components and learning modules is given below.

app.route([
 (eda, stresslm, {}),
 (eda, teaching.output, {}),
 (stresslm, teaching.output, {}),
 (stresslm, rlmodel, {}),
 (excitement_sensor, rlmodel, {}),
 (y_acceleration, teaching.output, {}),
 (y_acceleration, rlmodel, {}),
 (gyro_z, rlmodel, {}),
 (velocity, rlmodel, {}),
 (speed_limit, rlmodel, {}),
 (rlmodel, teaching.output, {})
])

Based on the output of the RL model that comes from the Teaching output node, we use the

DMU component to pass the appropriate driving profile change as a command to the

autonomous vehicle, using the publish_to_topic function of the DMU that publishes the

command to the same broker topic that the vehicle controller is listening for commands.

def publish_to_topic(self, topic, value):
 try:
 ret1 = self.client.publish(topic, value)
 print(ret1)
 except Exception as e:
 raise Exception("Queue {topic} doesn't exist. Get

getActiveProviderList for a complete list")

A demo video of the application developed that utilizes the Teaching AIaaS Toolkit is available

online.14

14 https://www.youtube.com/watch?v=xcK9E6d7CUM

https://www.youtube.com/watch?v=xcK9E6d7CUM

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 70 - September, 2021

7 Further Preliminary Results

As a part of the activities of WP4, several lines of scientific investigation focused on relevant

ML methodologies are currently active, in an exploratory or preliminary phase. The major

outcomes of this ongoing and preliminary work (spanning all active tasks T4.1, T4.2, T4.3 and

T4.4) are reported in this section.

More specifically, we show in Section 7.1 how to train ESNs with Tensorflow Lite. In Section

7.2 we show our preliminary results on Adversarial Robustness of Recurrent Models, a

fundamental component of our proposal to ensure safety and dependability of recurrent

networks. In Section 7.3, we show our preliminary results on Anomaly Detection with ESNs,

which will be fundamental for the anomaly detection in the avionics use case. Finally, we have

started to experiment with Continual Learning with ESNs. We show our experimental results

in Section 7.4, specifically for Human State Monitoring tasks.

7.1 Training ESNs with Tensorflow Lite

Training RNNs “on-the-edge” requires efficient algorithms and lightweight libraries able to run

on low-powered devices. For this purpose, we explored the use of TensorFlow Lite (TF-LITE),

a deep learning library designed with efficiency in mind. Unfortunately, TF-LITE does not offer

support for training natively, and therefore we had to implement the algorithms by ourselves.

The work done here may be useful in the future to efficiently deploy recurrent models that are

also trained on the edge. Furthermore, training on-the-edge allows to guarantee the user’s

privacy since the data never leaves the vehicle.

In these scenarios, we focused on ESNs, due to their efficient training algorithms. The model

is a basic Keras model, that will be converted into an appropriate format by TF-LITE. To train

the ESN we evaluated both a ridge regression and a direct solution computed using the

pseudoinverse. It is important to notice that not all the TensorFlow functions are supported by

TF-LITE. The basic TF-LITE runtime environment may limit the choice of possible algorithms

or require to reimplement some functionality if not available. For example, TF-LITE does not

support sparse linear algebra operations, which would have been useful for our implementation.

As an alternative, we used the corresponding operations on dense matrices. Similarly, the

pseudoinverse computation is supported by TensorFlow but not TF-LITE.

7.1.1 Implementation

The basic idea behind the implementation is that training an ESN is very similar to transfer

learning, where we keep the feature extractor fixed and only update the final classifier.

Figure 18 ESN separated into Base Model and Head

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 71 - September, 2021

As a result, our model is divided into two components: the base model, comprising the input

layer and recurrent reservoir, and a final head, which performs the classification using the

reservoir’s features (Figure 18). Notice from the figure that we have two heads, one for training,

and another for inference. This is necessary because these components are implemented via TF-

LITE Concrete Functions, and because TF-LITE does not allow to update the parameters.

• Inference Head performs the classification by doing a matrix multiplication followed

by a softmax activation.

• Training Head is the training algorithm computing the updated parameters.

After the training head computes the updated parameters, the weights can be saved in the disk

and the concrete function must be initialized again using the updated parameters. Instead,

during inference the inference head outputs the class probabilities for the input sequences.

In TF-LITE, concrete functions represent a computational graph, similarly to TensorFlow. The

conversion from a TensorFlow computational graph to a TF-LITE concrete function results in

a series of optimizations that makes the resulting computation more efficient, for example by

applying model quantization or fusing operations together.

Additional flags can be activated during the conversion process to enable operations which are

normally unavailable, such as the matrix inverse that we need to implement the ridge regression.

After the conversion, the concrete function can be saved and loaded on-device. In our

experiments, we focus on Python, but it is important to notice that TF-LITE supports many

other languages. We can load a concrete function using a TF-LITE interpreter, and performs its

computations by calling the method invoke, using the concrete function and input as arguments.

7.1.2 Results

We compared the efficiency of TF-LITE against TensorFlow for the base model (ESN

reservoir), training function (training head) and inference (inference head). We compared the

CPU time (Table 7), disk space (Table 8), and RAM usage (Table 9).

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 72 - September, 2021

Table 7 Comparison of CPU time of TensorFlow against TF-LITE

Table 8 Disk space of TensorFlow and TF-LITE

Table 9 RAM usage of TensorFlow against TF-LITE

Overall, we can see that TF-LITE can be orders of magnitudes better than TensorFlow in terms

of CPU time and disk space used, making it a very promising solution for on-device training.

The only disadvantage of TF-LITE is that by default training is not supported. While it is

possible to train models with TF-LITE, as we showed in these sections, it is more difficult to

implement than using TensorFlow since the programmer is constrained by the limitations

imposed by TF-LITE’s environment.

7.2 Preliminary Results on Adversarial Robustness of Recurrent Models

As we have seen in Section 2.6, the robustness of RNNs is a fundamental property to

determine their safety and proper measures to guarantee dependability.

To give an example of the quantification of robustness, we provide in this section an

experimental evaluation of RNNs on WESAD [45], a stress recognition dataset with

physiological and motion data from the users. We only provide a very preliminary evaluation.

For these reasons, we did not perform a large scale evaluation of recurrent models, and we use

hyperparameters which were found optimal from our previous internal experiments. We leave

a formal experimental evaluation as future work.

Notice that here we do not consider threshold values d1, d2, d3 defined in Section 2.6.1 and

instead we compute the amount of noise necessary to craft an adversarial example. Finally,

notice that the robustness value can be hard to interpret by looking at its absolute value. It is

better instead to compare different models against each other. For example, in our experiment

the average robustness of the models shows that the most robust model, RNN-64, is also the

less accurate.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 73 - September, 2021

Table 10 shows the results for a vanilla RNN with 64, 128, 256 hidden units, respectively.

Each model is trained to optimize the cross-entropy on the training data, using an Adam

optimizer for 200 epochs. After each epoch, the current model is evaluated on a validation set,

and the best model is restored after the training loop is completed. The results in the table are

computed on a separate test set. After training, we compute the prediction's robustness over a

set of 50 samples, by finding the amount of noise needed to craft an adversarial example. We

use POPQORN [37] to compute such values.

Table 10 Accuracy and adversarial robustness of RNNs trained on WESAD.

It is worth noticing that we do not consider threshold values 𝑑1, 𝑑2, 𝑑3 defined in Section 2.6.

Instead, we compute the amount of noise necessary to craft an adversarial example. Finally,

notice that the robustness value can be hard to interpret by looking at its absolute value. It is

better instead to compare different models against each other. For example, in our experiment

the average robustness of the models shows that the most robust model, RNN-64, is also the

less accurate.

7.3 Preliminary Results on Anomaly Detection with Echo State Networks

Due to the complexity of avionics systems, and the complexity of their protocols, modern

monitoring systems needs to be constantly aware of the current state of the system, and actively

catch any eventual anomaly. The available sensors can be used to collect useful data, both for

normal and anomalous situations. These data can be studied to classify anomalous behaviour

in the future as soon as it occurs, to avoid disasters. As a preliminary study, we decided to

evaluation RNNs and ESNs on anomaly detection on time series datasets.

We used telemetry data from the Soil Moisture Active Passive (SMAP) satellite, and from the

Curiosity rover on Mars (MSL). Data have been anonymized, separated into train and test set,

and normalized between -1 and +1. The data are separated into multiple channels. Notice that

the data has been collected during real accidents, and the label have been created by domain

experts.

Currently, we are still working on the experimental phase. Preliminary results are promising

and show that both LSTMs and ESNs are able to detect anomalous situations. We show the

ROC curves for LSTMs (Figure 19) and ESNs (Figure 20). Table 11 summarizes the results.

Unfortunately, we still do not have access to anomalies from the avionics use case, therefore

we had to resort to datasets from the literature. We will perform an experimental evaluation on

avionics data whenever such data becomes available.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 74 - September, 2021

Figure 19 ROC curves LSTMs.

Figure 20 ROC curves ESNs.

Table 11 Results on anomaly detection datasets.

7.4 Continual Learning with Echo State Networks

As we have discussed in Section 2.3, learning from a stream of data without forgetting previous

knowledge is one of the key challenges in continual learning. However, the use of RNNs

introduces additional issues with respect to common feedforward models, since large input

sequence lengths reduce the ability of existing continual learning strategies to mitigate

forgetting.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 75 - September, 2021

We believe that recurrent models like ESNs can be effectively leveraged to mitigate

catastrophic forgetting. The fact that ESNs have an untrained recurrent component can benefit

the continual learning performance in several ways: first, forgetting cannot originate from

parameters that do not change (they are completely stable). Therefore, continual learning

strategies do not need to consider them. Second, since training by backpropagation does not

require to compute the gradients of recurrent parameters across all input time-steps, ESNs

should be able to mitigate the negative effect of large input sequence lengths described above.

Third, the fixed ESN component (called reservoir) can be leveraged as a pretrained network.

This is a widely used solution in continual learning for computer vision applications, where

there is a large availability of pre-trained models. Therefore, ESNs allow to effectively exploit

such strategies.

7.4.1 Results

In [46] we studied the aforementioned aspects with experiments on two continual learning

benchmarks. In particular, we evaluated the performance of ESNs in terms of catastrophic

forgetting on two class-incremental continual learning benchmarks: Split MNIST and Synthetic

Speech Commands. The former is a benchmark composed of 5 tasks, each of which takes

images from 2 classes of MNIST. Images are taken one row at a time, producing sequences of

28 time-steps. The latter is a benchmark with 10 tasks, each of which presents audio samples

representing 2 different spoken words. Each sequence has 101 time-steps. At the end of training

on all tasks, we evaluated the model average accuracy across a separate test set of all tasks.

We employed four popular continual learning strategies not specifically designed for recurrent

models: EWC, LWF, Replay and SLDA. We also reported the performance for Naive

finetuning (training without any continual learning technique) and Joint Training (training on

all data at once). They can be considered respectively as a lower and upper bound on the

continual learning performance.

Table 12 Average Accuracy across all tasks for ESN and LSTM with popular continual learning

strategies. Taken from [46].

The results in Table 12 showed that ESNs behave similar to LSTM networks when trained

together with popular continual learning strategies. Replay is the only strategy for which LSTM

outperforms ESN. However, additional studies (not yet published) confirmed that ESNs with

output feedback connections are able to close the performance gap for replay strategies.

The performance of Deep SLDA is promising on both benchmarks: this is a crucial aspect of

the study since SLDA can only be applied in the presence of a fixed feature extractor. Since

there is no availability of pretrained LSTM models, ESNs is the only choice to leverage SLDA

on these benchmarks.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 76 - September, 2021

7.4.2 Discussion

By studying and developing recurrent models able to learn continuously, it will be possible to

tackle many continual learning applications which currently lack a working solution: from stock

prediction to human activity recognition, the need of recurrent models in dynamic environments

is widespread. Additionally, training on the edge will be a key enabler for continual learning,

since sending data to a centralized data center requires time and is not always possible (data

privacy issues). ESNs promise to combine these two aspects: an efficient, on-device

implementation (e.g. through neuromorphic hardware) able to be trained on the edge with fast

and efficient continual learning strategies that only have to deal with a linear classifier, instead

of a complex recurrent architecture.

7.5 Continual Learning for Human State Monitoring

Having robust Continual Learning algorithms for Human State Monitoring data is critical for

real applications. By comparing neural networks trained with continual learning methods to a

neural network trained via a classic offline training we can figure out how different the final

inference results will be using the continual learning methods. We have selected 6 simple

continual learning methods and compared the results to the offline training. The selected

methods are the following:

1. Naive continual learning, where the data is passed to the training of the neural network

without further actions

2. Replay, where we keep a percentage of the training data to use as a replay data in the next

training session

3. Cumulative, a replay method with a percentage of 100%: we bring all the training data to

the next training session

4. Episodic, in which we keep a fixed number of examples per class and bring them to the

next training session

5. Learning Without Forgetting, per the homonym paper [47].

6. Elastic Weight Consolidation, following the introductory paper [48].

The comparisons were done with data from two popular Human State Monitoring datasets:

WESAD and ASCERTAIN. The first one, WESAD, contains data from 15 subjects gathered

in a laboratory experiment regarding stress levels: the data were recorded by two devices, one

on the wrist and one on the chest, that recorded levels of respiration, body temperature, ECG

and more. The second dataset, ASCERTAIN, is very similar, with data from 58 subjects

gathered with commercial devices that recorded respiration, skin galvanic responses, ECG and

more.

We compared the various methods by measuring the number of epochs needed for training, the

time it required, the average accuracy over the training sessions, the final accuracy, forward

and backward knowledge transfer and the memory used during the process.

The results (Table 13 and Table 14) show how the data really affects the results of the model.

Over WESAD, with a neural network of two GRU layers of 18 units, we got a 99% accuracy

with the offline training, and an accuracy above 70% with each of the continual methods with

the best performance obtained by the cumulative method which got a final accuracy of 96%.

ASCERTAIN showed up to be more of a challenge, with the offline training on a neural

network of two GRU layers of 24 units obtaining an accuracy of 42.78% and each continual

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 77 - September, 2021

learning method staying between 35% and 40%. This proves once again how the continual

learning methods are comparable to the offline learning.

Table 13 Results over WESAD

Scenario Epochs Time Accuracy ACC BWT FWT Memory
Offline 28 94,69s 99,07 - - - 2061,40 Mb

Continual 49,14±33,67 947,24s 73,13±4,02 0,7721 0,0343 0,5397 2173 Mb

Cumulative 39,71±19,91 2786s 81,97±8,67 0,961 0,1383 0,4674 2291,45 Mb

Replay 41,14±21,19 1063,51s 78,29±3,32 0,7849 -0,002 0,4582 2184,77 Mb

Episodic 35±26,26 1088,29s 82,13±6,60 0,9095 0,0841 0,4226 2097,47 Mb

EWC 29,71±17,38 1342,81s 70,74±4,74 0,7251 0,0113 0,4698 2187,40 Mb

LWF 44,29±18,30 3282,51s 69,09±5,82 0,7419 0,0451 0,3248 2121,31 Mb

Table 14 Results over ASCERTAIN

Scenario Epochs Time Accuracy ACC BWT FWT Memory
Offline 3 29,14s 42,78 - - - 1817,28 Mb

Continual 10,88±5,01 249,28s 37,45±5,01 0,25 -0,0168 0,0213 2154,36Mb

Cumulative 9,25±6,81 932,56s 39,06±4,26 0,2697 0,0064 0,0278 2297,17 Mb
Replay 13,25±10,03 402,96s 39,48±4,37 0,2603 -0,014 0,0485 2173,95 Mb
Episodic 12,62±7,94 498,24s 38,80±4,04 0,2742 0,0048 0,0156 2231,42 Mb
EWC 24,14±16,94 810,96s 36,08±5,66 0,2497 -0,0183 -0,0003 2171,62 Mb
LWF 21,62±10,20 879,68s 35,69±5,43 0,2448 0,0327 0,0156 2103 Mb

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 78 - September, 2021

8 Conclusion

WP4 has the role of designing the necessary methodologies and software for creating the

TEACHING AI as a Service (AIaaS) system. Currently, all the four tasks of the WP are active.

In this document we have provided a report on the integrated mockup of the AIaaS, providing

an overview of the refined architectural design, as well as a detailed description of the platform

components and of the identified learning modules. Moreover, we have illustrated the

integration process, giving an in-depth description of the integration scripts and demos. We also

updated the state-of-the-art analysis and gave preliminary results on on-going AI-related

research work. Together with the other deliverables delivered at M20, this document

contributes to the fulfillment of the project’s Milestone MS2 (First integrated setup with mock-

up of the TEACHING platform).

Following the envisaged project’s lifecycle, the outcomes of the work conducted in WP4 and

described in this document, along with that of the other technical WPs, will be important to

complete the core technological building (Phase 2 of the project), following a continuous

process of integration with progressively more advanced functionalities (towards Milestone

MS4), and to drive the efforts in the use case integration and validation (Phase 3 of the project,

towards Deliverable D4.3 and Milestones MS5-6).

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 79 - September, 2021

9 Bibliography

[1] J. F. Kolen and S. C. Kremer, A field guide to dynamical recurrent networks, John

Wiley & Sons, 2001.

[2] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving

energy in wireless communication,” Science, vol. 304, pp. 78-80, 2004.

[3] C. Gallicchio and A. Micheli, “Architectural and markovian factors of echo state

networks,” Neural Networks, vol. 24, no. 5, pp. 440-456, 2011.

[4] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to recurrent neural

network training,” Computer Science Review, pp. 127-149, 2009.

[5] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata,

D. Nakano and A. Hirose, “Recent advances in physical reservoir computing: A

review,” Neural Networks, 2019.

[6] D. Verstraeten, B. Schrauwen, M. d’Haene and D. Stroobandt, “An experimental

unification of reservoir computing methods,” Neural Networks, pp. 391-403, 2007.

[7] K. Nakajima and I. Fischer, Reservoir Computing, Springer, 2021.

[8] C. Gallicchio, A. Micheli and L. Pedrelli, “Deep reservoir computing: A critical

experimental analysis,” Neurocomputing, vol. 268, pp. 87-99, 2017.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, p. 1735–1780, 1997.

[10] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical

machine translation,” in EMNLP, 2014.

[11] N. Bertschinger and T. Natschlager, “Real-time computation at the edge of chaos in

recurrent neural networks,” Neural Computation, vol. 16, no. 7, p. 1413–1436, 2004.

[12] B. Schrauwen, M. Wardermann, D. Verstraeten, J. Steil and D. Stroobandt, “Improving

reservoirs using intrinsic plasticity,” Neurocomputing, vol. 71, pp. 1159-1171, 2008.

[13] C. Gallicchio, A. Micheli and L. Silvestri, “Phase Transition adaptation,” in

International Joint Conference on Neural Networks (IJCNN), 2021.

[14] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE Transactions

on Neural Networks, vol. 22, no. 1, pp. 131-144, 2010.

[15] T. Li, A. K. Sahu, A. Talwalkar and V. Smith, “Federated Learning: Challenges,

Methods, and Future Directions,” IEEE Signal Processing Magazine, 2020.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson and B. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Artificial intelligence

and statistics, 2017.

[17] D. Bacciu, D. Di Sarli, P. Faraji, C. Gallicchio and A. Micheli, “Federated Reservoir

Computing Neural Networks,” International Joint Conference on Neural Networks,

2021.

[18] V. Lomonaco, Continual learning with deep architectures, PhD Dissertation, Alma

Mater Studiorum - University of Bologna, 2019.

[19] D. Bacciu et al., “TEACHING: Trustworthy Autonomous Cyber-physical Applications

through Human-Centred Intelligence,” in IEEE COINS, 2021.

[20] A. Cossu, A. Carta, V. Lomonaco and D. Bacciu, “Continual Learning for Recurrent

Neural Networks: an Empirical Evaluation,” 2021.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 80 - September, 2021

[21] J. Janai, F. Güney, A. Behl and A. Geiger, “Computer vision for autonomous vehicles:

Problems, datasets and state of the art.,” Foundations and Trends® in Computer

Graphics and Vision, pp. 12(1–3), 1-308., 2020.

[22] F. Codevilla, M. Müller, A. López and V. Koltun, “End-to-end driving via conditional

imitation learning.,” in In 2018 IEEE International Conference on Robotics and

Automation (ICRA), 2018, May.

[23] M. P. Kebria, A. Khosravi, M. S. Salaken, M. S. Salaken and S. Nahavandi, “Deep

imitation learning for autonomous vehicles based on convolutional neural networks,”

IEEE/CAA Journal of Automatica Sinica, pp. 7(1), 82-95., 2019.

[24] E. A. Sallab, M. Abdou, E. Perot and S. YogamanI, “Deep reinforcement learning

framework for autonomous driving.,” Electronic Imaging, pp. 2017(19), 70-76., 2017.

[25] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, ... and K.

Zieba, “End to end learning for self-driving cars.,” in arXiv preprint arXiv:1604.07316,

2016.

[26] S. Elmalaki, R. H. Tsai and M. Srivastava, “Sentio: Driver-in-the-loop forward collision

warning using multisample reinforcement learning.,” in In Proceedings of the 16th ACM

Conference on Embedded Networked Sensor Systems, 2018, November.

[27] R. Liu, A. Sarkar, E. Solovey and S. Tschiatschek, “Evaluating Rule-based

Programming and ReinforcementLearning for Personalising an Intelligent System.,” in

In IUI Workshops, 2019, January.

[28] Y. A. Gao, W. Barendregt and G. Castellano, “Personalised human-robot co-adaptation

in instructional settings using reinforcement learning.,” in In IVA Workshop on

Persuasive Embodied Agents for Behavior Change: PEACH 2017, Sweden, Stockholm,

2017, August 27.

[29] B. Abera, Y. Naudet and H. Panetto, “Towards a Personalisation Framework for Cyber-

Physical-Social System (CPSS).,” in In 17th IFAC Symposium on Information Control

Problems in Manufacturing., 2021, June.

[30] V. Mnih, P. A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, ... and K.

Kavukcuoglu, “Asynchronous methods for deep reinforcement learning.,” in In

International conference on machine learning, 2016, June.

[31] X. J. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, Z. J. Leibo, R. Munos, ... and M.

Botvinick, “Learning to reinforcement learn.,” in arXiv preprint arXiv:1611.05763.,

2016.

[32] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar and L.

Zhang, “Deep Learning with Differential Privacy,” in ACM SIGSAC Conference on

Computer and Communications Security, New York, NY, USA, 2016.

[33] I. O. f. Standardization, ISO 26262:2018, Road vehicles — Functional safety, 2018.

[34] I. O. f. Standardization, ISO/PAS 21448:2019, Road vehicles — Safety of the intended

functionality, 2019.

[35] D. Bacciu, A. Carta, D. Di Sarli, C. Gallicchio and S. Petroni, “Towards Functional

Safety Compliance of RecurrentNeural Networks,” under review, 2021.

[36] A. Kurakin; I. Goodfellow; S. Bengio; et al., “Adversarial examples in the physical

world,” 2016.

[37] C.-Y. Ko, Z. Lyu, L. Weng, L. Daniel, N. Wong and D. Lin, “POPQORN: Quantifying

Robustness of Recurrent Neural Networks,” in ICML, 2019.

[38] P. Koopman, Safety Performance Indicators (SPIs) for Self-Driving Cars, 2020.

TEACHING D4.2 ICT-01-2019/№ 871385

TEACHING - 81 - September, 2021

[39] R. Al-amri, R. K. Murugesan, M. Man, . A. F. Abdulateef, M. A. Al-Sharafi and A. A.

Alkahtani, “A Review of Machine Learning and Deep Learning Techniques for

Anomaly Detection in IoT Data,” Applied Sciences, vol. 11, no. 12, p. 5320, 2021.

[40] G. Pang, C. Shen, L. Cao and A. van den Hengel , “Deep Learning for Anomaly

Detection: A Review,” arXiv e-prints, p. arXiv:2007.02500, 2020.

[41] L. Basora, X. Olive and T. Dubot, “Recent Advances in Anomaly Detection Methods

Applied to Aviation,” Aerospace, vol. 6, no. 11, 2019.

[42] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection: A Survey,”

arXiv e-prints, p. arXiv:1901.03407, 2019.

[43] P. Malhotra, L. Vig, G. Shroff and P. Agarwal, “Long Short Term Memory Networks

for Anomaly Detection in Time Series,” in European Symposium on Artificial Neural

Networks, Computational Intelligence, Bruges, Belgium, 2015.

[44] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal and G. Shroff, “LSTM-

based Encoder-Decoder for Multi-sensor Anomaly Detection,” arXiv e-prints, p.

arXiv:1607.00148, 2016.

[45] P. Schmidt, A. Reiss, R. Duerichen and K. V. Laerhoven, “Introducing WESAD, a

Multimodal Dataset for Wearable Stress and Affect Detection,” in ICMI, 2018.

[46] A. Cossu, D. Bacciu, A. Carta, C. Gallicchio and V. Lomonaco, “Continual Learning

with Echo State Networks,” in European Symposium on Artificial Neural Networks

(ESANN), 2021.

[47] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern

analysis and machine intelligence, 2017.

[48] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K.

Milan, J. Quan, T. Ramalho and A. Grabska-Barwinska, “Overcoming catastrophic

forgetting in neural networks,” in Proceedings of the national academy of sciences,

2017.

[49] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[50] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436-444, 2015.

[51] D. Bacciu, D. Di Sarli, C. Gallicchio, A. Micheli and N. Puccinelli, “Benchmarking

Reservoir and Recurrent Neural Networks for Human State and Activity Recognition,”

International Work-Conference on Artificial Neural Networks, 2021.

	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Relationship with other deliverables

	2 Updated State-of-the-art Analysis
	2
	2.1 Recurrent and Reservoir Computing Neural Networks
	2.2 Federated Learning
	2.3 Continual Learning
	2.4 Reinforcement Learning
	2.5 Privacy-preserving Learning
	2.6 Dependable and Safe AI
	1.
	2.
	2.1.
	2.2.
	2.3.
	2.4.
	2.5.
	2.6.
	2.6.1.
	2.6.2.
	2.6.1 Determination of RNN Adversarial Robustness by Inputs Perturbation
	2.6.2 Design of Safety Measures for Plausibility Checks
	2.6.3 Safety Validation: Determination of SPIs and Test Length

	2.7 Anomaly Detection

	3 AIaaS Architecture
	1
	2
	3
	3.1 Rationale

	1
	1.1
	3.2 High-level Requirements
	3.3 Overview
	3.3.1 Architecture Overview
	3.3.2 Prototype Architecture
	3.3.3 Application Description
	3.3.4 Data Routing Definition in the M18 Prototype

	3.4 Data and Metadata Formats
	3.4.1 Data format and message structure outside the AI framework
	3.4.2 Internal data Format for the AI framework / AI data bus

	4 AIaaS Platform Components
	1
	4.1 AI Framework
	4.2 Application Runtime
	4.2.1 Application Runtime Implementation
	4.2.2 Data Flow and Activity Scheduling in the M18 Prototype

	4.3 Application Translator
	4.4 Data Ingestion / Brokering
	4.4.1 Data Brokering Implementation

	4.5 External Communication Interface
	4.5.1 External Communication Interface Implementation

	4.6 Sensors API
	4.7 Local Storage API
	4.8 Decision Management Unit

	5 AIaaS Learning Modules
	5.1 Time-series RNN
	5.1.1 Execution modes
	5.1.2 Input and output
	5.1.3 List of API calls
	5.1.4 Implementations of the LM

	5.2 Time-series RC-ESN
	5.2.1 Execution modes
	5.2.2 Hyperparameters
	5.2.3 Input and output
	5.2.4 List of API calls
	5.2.5 Implementations of the LM

	5.3 Federated Learning
	5.3.1 Execution modes
	5.3.2 Input and output
	5.3.3 List of API calls
	5.3.4 Implementations of the LM

	5.4 Continual Learning
	5.4.1 Execution modes
	5.4.2 Input and output
	5.4.3 List of API calls
	5.4.4 Implementations of the LM

	5.5 Privacy-preserving
	5.5.1 Execution modes
	5.5.2 Input and output
	5.5.3 List of API calls
	5.5.4 Implementations of the LM

	5.6 Dependable AI – Adversarial Robustness
	5.6.1 Execution modes
	5.6.2 Input and output
	5.6.3 List of API calls
	5.6.4 Implementations of the LM

	5.7 Hyper-parameters Selection
	5.7.1 Execution modes
	5.7.2 Input and output
	5.7.3 List of API calls
	The list of methods available for this LM are the following:

	5.7.4 Implementations of the LM

	5.8 Anomaly Detection
	5.8.1 Execution modes
	5.8.2 Input and output
	5.8.3 List of API calls
	5.8.4 Implementations of the LM

	5.9 Reinforcement Learning
	5.9.1 Execution modes
	5.9.2 Input and output
	5.9.3 List of API calls
	5.9.4 Implementations of the LM

	6 AIaaS Integration
	6.1 AI-Toolkit Organization
	6.2 Setup and Mockup Integration Script
	6.3 Mockup Use Cases
	6.3.1 Sequence Classification with Continual Learning
	6.3.2 Dependability
	6.3.3 Reinforcement Learning
	6.3.4 Federated Learning

	6.4 Demo Applications
	6.4.1 Stress Monitoring
	6.4.2 Autonomous Driving Personalization

	7 Further Preliminary Results
	7.1 Training ESNs with Tensorflow Lite
	7.1.1 Implementation
	7.1.2 Results

	7.2 Preliminary Results on Adversarial Robustness of Recurrent Models
	7.3 Preliminary Results on Anomaly Detection with Echo State Networks
	7.4 Continual Learning with Echo State Networks
	7.4.1 Results
	7.4.2 Discussion

	7.5 Continual Learning for Human State Monitoring

	8 Conclusion
	9 Bibliography

