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Executive Summary 

The Deliverable D4.1, titled “Initial report on the AIaaS system” provides the first report on the 

state-of-the-art analysis, preliminary requirement specifications, and design of the Artificial 

Intelligence as a Service (AIaaS) system developed as part of the WP4. As such, it describes 

the necessary preliminary work on AI and ML algorithms that are intended to support the 

human-centric intelligence and adaptivity in TEACHING CPSoS applications.  

In particular, this document describes the suite of computational methodologies adopted from 

an AI and ML perspective, focusing on dynamically driven Recurrent Neural Networks and 

efficiently trained Reservoir Computing, metrics for Neural Networks dependability and safety, 

Human State Monitoring and personalization in autonomous vehicles. It also presents the 

preliminary requirement specifications and the design, including the first version of the 

architecture of the AIaaS system. In addition to this, as a plus in anticipation of the work to be 

conducted in Y2, this document introduces some preliminary results in Federated Reservoir 

Computing, stress estimation using Reservoir Computing, and personalization in autonomous 

vehicles. 

This document is structured as follows. In Section 1 we introduce the scopes of this document 

and the relations with the other deliverables delivered at M12. Then, in Section 2 we give an 

extensive state-of-the-art analysis to introduce the core AI/ML methodology bricks that will be 

central for the development of the TEACHING AIaaS software infrastructure. This background 

analysis is followed in Section 3 by a description of the identified requirements for the 

development of the AIaaS system. In Section 4, we present the architectural design, illustrating 

how the TEACHING platform is intended to support the AIaaS applications. In Section 5 we 

illustrate preliminary results of the work expected in Y2. Finally, in Section 6 conclude the 

document. 
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1. Introduction 

The TEACHING project aims at designing a computing platform and the associated software 

toolkit to support the development and the deployment of adaptive and dependable Cyber-

Physical Systems of Systems (CPSoS) applications, enabling them to exploit sustainable 

human feedback to drive, optimize and personalize the provisioning of the offered services. 

Central to the project is the concept of Humanistic Intelligence in autonomous CPSoS, where 

the human and the cybernetic components cooperate in a process of mutual empowerment. The 

concept of distributed, efficient, and dependable AI, leveraging edge computing support, is 

hence fundamental to achieve the goals of the project. 

The essential goal of WP4 is to design methodologies and tools to create the TEACHING 

Artificial Intelligence as a Service (AIaaS) software infrastructure for CPSoS applications, 

developing human-centric personalization mechanisms. The activities of this WP are organized 

accordingly: 1) develop a toolkit that implements the core methodological components of the 

TEACHING AIaaS; 2) develop AI methodologies that are specialized in the recognition and 

characterization of the human physiological, emotional, and cognitive state from streams of 

data gathered from heterogeneous sensors; 3) develop the necessary functionalities to self-adapt 

and personalize AI models, implicitly using the human state information; 4) develop privacy-

aware AI methodologies that can be bundled within the AIaaS toolkit. The above-mentioned 

activities are respectively mapped into the four WP4 tasks T4.1-4. Of these, T4.1 “AI as a 

service” started at M1, T4.2 “AI for human monitoring” and T4.3 “AI models for human-centric 

personalization” started together at M7, while T4.4 “Privacy-aware AI models” starts at M12.  

According to the overall organization of the TEACHING project development, the first year of 

work (Phase 1) in WP4 focused on the necessary preliminary research in AI/ML-related 

algorithms to support humanistic intelligence in CPSoS applications, as well as in the definition 

of the AIaaS architecture. In this context, the objectives of this deliverable are the following: 

• Provide an in-depth state-of-the-art analysis of the AI and ML-based methodologies that 

have been identified as fundamental to the realization of the TEACHING AIaaS system 

infrastructure, given the nature of the learning problems involved; 

• Report the preliminary requirements of the TEACHING AIaaS system; 

• Develop a preliminary design of the TEACHING AIaaS system, indicating how the 

TEACHING platform supports AI applications. 

Moreover, in anticipation of the work expected in Y2, in this document, we also provide – as a 

plus to the deliverable objectives - a report on the preliminary results of the technical analysis 

on relevant AI/ML techniques performed within the aims of WP4. 

The rest of this deliverable is structured as follows. We start in Section 2, presenting a state-of-

the-art analysis of the major techniques in AI and ML that have been identified as crucial to the 

development of the core learning functionalities of the AIaaS. In particular, we focus on 

dynamical Neural Networks (NNs) models under the umbrella of Recurrent Neural Networks 

(RNNs) and efficiently trained Reservoir Computing models. The analysis is there 

complemented by a thorough review of the fundamental concepts in Federated and Continual 

Learning, assessment of NNs dependability, human-state monitoring approaches, and 

personalization in autonomous vehicle applications. The state-of-the-art analysis is followed by 

a description of the preliminary TEACHING AIaaS requirements, in Section 3. The system 

requirements are analyzed and put forward at different levels (including functional, non-

functional, architectural, safety, performance, and structural), and the aim is to give a detailed 
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breakdown originating from the WP4 technological perspective, within the general project’s 

context (as described in Deliverable D5.1). On these bases, we introduce the preliminary design 

of the TEACHING AIaaS system in Section 4, where we detail the basic elements of the 

software architecture and the TEACHING AI application model. The fundamental idea behind 

our proposal is to enable the developer to construct an AI application by composing a pool of 

functional units implementing the TEACHING learning-related functionalities (illustrated in 

Section 2). These represent a sort of Lego blocks that can be chained together exploiting 

automatic routing of the data that is necessary for training and inference. We also take the 

chance to introduce some preliminary results on the development work that has been conducted 

in the active tasks T4.1-3, in Section 5. Finally, we delineate the conclusions in Section 6. 

Before that, in the next Section 1.1, we briefly recall the links to the other deliverables. 

1.1. Relationship with other deliverables 

In compliance with its intended purpose within the scopes of the TEACHING project, this 

document (D4.1) presents the fundamental ML methodology bricks that will realize the 

learning-related functionalities of the TEACHING AIaaS, together with its preliminary 

requirements and design. This document is delivered within a group of related project 

deliverables, namely D1.1, D2.1, D3.1, D4.1, and D5.1 (listed in Table 1), all of which serve 

as a mean of verification for milestone MS1, entitled Release of the TEACHING design 

(requirements, specification, and architecture).   

Table 1 Deliverable grouping for verification of TEACHING Milestone 1 

D1.1 Report on TEACHING related technologies SoA and derived CPSoS requirements  

D2.1 State-of-the-art analysis and preliminary requirement specifications for the 

computing and communication platform 

D3.1 Initial Report on Engineering Methods and Architecture Patterns of Dependable 

CPSoS 

D4.1 Initial report on the AIaaS system 

D5.1 Initial use case specifications 

 

Below, we briefly report the major connections of D4.1 with the other deliverables in Table 1. 

Relations with D1.1 - Within the conceptual architecture of the TEACHING platform described 

in D1.1 (Section 6) the work described in D4.1 focuses on the necessary preliminary analysis 

for the development of the AI Toolkit in the TEACHING SDK, linked to the ML Libraries in 

the Execution/Management Environment layer. Details on specific technologies and tools of 

interest for D4.1 can be found in D1.1, including libraries for Machine Learning and Deep 

Learning (D1.1, Section 5.3.2), and TEACHING selected sensors for software/hardware 

monitoring (D1.1, Section 5.2.1) and for human monitoring (D1.1, Section 5.2.1), which 

represent major input sources for the learning modules described in this deliverable.  

Relations with D2.1 - D2.1 discusses the preliminary work conducted about the TEACHING 

computing platform that intends to support the AI/ML modules and methodologies that are 

described in this document. The High-Performance Computing and Communication 

Infrastructure (HPC2I, whose preliminary design is offered in Section 4 of D2.1) provides the 

necessary computational support to the learning modules that constitute the core bricks of the 

ML capabilities in TEACHING. The properties of the selected AI/ML techniques and the 

involved requirements (as described herein D4.1) have an impact on D2.1, especially 



TEACHING D4.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 12 - December, 2020 

concerning communication and data transfer for federated learning modules and functionalities 

envisaged in the AIaaS system. Moreover, D2.1 (Section 5.3) presents a discussion on the 

frameworks for ML that are related to the content of this document, presenting the available 

alternatives from the perspective of the computing platform. 

Relations with D3.1 - D3.1 informs the activities of the other WPs from the dependability point 

of view. Regarding WP4, this interaction mainly regards the development of human-centric 

adaptivity in CPSoS in a dependable manner. In particular, the implementation of the learning-

based functionalities described in D4.1 will be explored within the dependability architectural 

perspective illustrated in D3.1 Section 4. Besides, Section 6 in D3.1 addresses ML-related 

topics involved by distributed intelligence on heterogeneous devices from the dependability 

perspective. Finally, the methods described as part of the state of the art in D4.1 can naturally 

apply also to problems in cybersecurity identified in D3.1 Section 5.3.  

Relations with D5.1 - D5.1 gives the initial specifications of the TEACHING use cases in which 

the ML-related core technologies described in D4.1 will be adopted to enhance the CPSoS 

functionalities. Specifically, the Avionics and the Automotive use cases are described 

respectively in Sections 4 and 5 of D5.1. Moreover, Section 5 in D5.1 gives an overview of the 

hardware platform chosen for demonstration of both the use cases, therefore being of interest 

for the ML algorithms described herein D4.1. 

The mapping of the viewpoints of the technical WPs, as well as the integration intentions of the 

TEACHING technology bricks in domain use cases, is depicted in Figure 1.  

 

Figure 1 Depiction of the IIRA Viewpoints from 1 and mapping of focus of  TEACHING Deliverables MS1.  

 

1 https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/  

D5.1 

D1.1 

D2.1 D4.1 

D3.1

https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/
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2. State-of-the-art Analysis 

This section aims at providing an overview of the core Machine Learning (ML) methodologies 

that are of special interest in the design and development of the TEACHING AIaaS software 

infrastructure. 

AI, and particularly ML, nowadays play a fundamental role in many industrial applications, as 

a key enabler to infer salient information from huge amounts of data, possibly gathered from 

heterogeneous sensors, and especially in scenarios where the human interacts with pervasive 

computing environments.  Moreover, AI and ML are increasingly being used as a way to 

effectively monitor human status conditions, and, more in general, to detect physiological 

patterns that might impact the way in which humans interact in the environments where they 

live or work. The relevance of this kind of monitoring activity becomes fundamental especially 

when the human factor is considered in the context of safety-critical systems operations. Taking 

a physiological computing perspective, human physiological data streams are considered as 

input information that enables the creation of a user-state representation of interest, giving 

implicit feedback that can drive the personalization of the system’s services. 

From a methodological perspective, the success of Deep Learning (DL) [1] [2] models is now 

apparent to everyone. Deep NNs hold state-of-the-art results in a large variety of (mainly 

cognitive-related) applications, including multimedia and natural language processing. 

However, common DL approaches typically require considerable computational, 

communication, and storage resources to produce effective results. At the same time, is more 

and more frequent the case in which the success of an AI application is not defined solely in 

terms of accuracy, and other constraints such as time and (computational) efficiency of the 

learning algorithms are of key importance. This is the case, for instance, of embedded and 

distributed AI, where the objective is to enable the AI application running on the edge device 

to be able not only to do inference (e.g., using pre-trained learning modules under factory 

conditions), but to also perform adaptation and personalization. In this context, the field of Deep 

Randomized NNs is recently hitting the literature [3] [4] [5] [6] [7] [8], showing a great trade-

off between accuracy and complexity. The basic idea is to maximally exploit the biases of Deep 

NN architectures while reducing the amount of trainable internal connections as much as 

possible to minimize the complexity of training algorithms. This has intriguing mathematical 

and theoretical grounds, nicely summarized by a famous quote by Rahimi and Recht [7] 

“randomization is computationally cheaper than optimization”, as well as important roots in 

computational neuroscience [9]. 

Summing up, approaching learning problems in the field of human-centric personalization for 

CPSoS applications requires taking into account ML methodologies that are able to easily treat 

the inherent temporal structure of the sensors’ data streams, ensuring flexibility, noise tolerance, 

and efficiency to enable implementations in low-powerful edge devices. In light of these 

considerations, while we keep an open perspective in considering a large candidate pool of ML 

methods, we find that the class of Recurrent NNs, especially implemented according to the 

dictates of Deep Randomized NNs and Reservoir Computing, is particularly appropriate to 

constitute the basic ML methodology bricks (and the core reference) in our applications. For 

our purposes, this class of learning models needs to be integrated with a number of advanced 

ML techniques, including Federated and Continual Learning, controlled by suitable metrics for 

NNs dependability, and considered as parts of human-centric personalization systems. 
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The rest of this section is structured as follows. We start in Section 2.1 by giving an overview 

of the fundamental concepts in Recurrent and Reservoir Computing NN models, ranging from 

basic approaches to recent advances in the field (including Deep Reservoir Computing NNs). 

Then, in Sections 2.2 and 2.3 we respectively discuss the topics of Federated Learning and 

Continual Learning, which will be exploited in synergy with the NN concepts to provide local, 

decentralized, and federated adaptation/personalization. When it comes to putting algorithms 

involving learning modules in production for safety-critical applications, dependability and 

safety identify important desirable features. In Section 2.4, we present a number of relevant 

computable metrics for assessing the dependability and safety of NN algorithms. The current 

state-of-the-art in ML approaches for Human State Monitoring is summarized, along with the 

TEACHING view, in Section 2.5, while Section 2.6 covers the aspects of personalization in 

autonomous vehicles applications. In Section 2.7 we contextualize the analyzed methodologies 

in terms of modern software frameworks for ML. Finally, in Section 2.8 we briefly discuss how 

the state-of-the-art described here will enable the TEACHING use cases. 

2.1. Recurrent and Reservoir Computing Neural Networks 

Recurrent Neural Networks (RNNs) [10] are a computing system loosely inspired by the 

biological neural networks in the brain. The recurrent connections between the neurons, or 

nodes, allow RNNs to exhibit a memory of the recent past, thus enabling an effective processing 

of temporal data. Formally, the discrete-time evolution of the internal state of a RNN can be 

defined as: 

𝐡(𝑡) = 𝑡𝑎𝑛ℎ(𝐕𝐱(𝑡) + 𝐖𝐡(𝑡 − 1)), 

where 𝐡(𝑡) ∈ ℝ𝑁𝐻 is the state of the network at time 𝑡, 𝐱(𝑡) ∈ ℝ𝑁𝑋 is the input at time 𝑡, and 

𝐕 ∈ ℝ𝑁𝐻×𝑁𝑋, and 𝐖 ∈ ℝ𝑁𝐻×𝑁𝐻 are the parameters which can be adjusted by the training 

process. From a given state 𝐡(𝑡), the network can compute a prediction 𝐲(𝑡) ∈ ℝ𝑁𝑌 as: 

𝐲(𝑡) = 𝐔𝐡(𝑡), 

where 𝐔 ∈ ℝ𝐍𝐘×𝐍𝐇 is another matrix of parameters that are adjusted by a training algorithm. 

Graphically, a RNN can be represented as in Figure 2, where it is illustrated a RNN with an 

input layer of 3 neurons, one recurrent layer of 7 neurons, and an output layer of 2 neurons. 

Notice the self-connections within the recurrent layer. Also notice the self-connections within 

the recurrent layer. 

 

Figure 2  A recurrent neural network. 
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2.1.1. Backpropagation Training of Recurrent Neural Networks 

In the case of supervised learning, training a RNN involves adjusting the parameters of the 

network on the basis of a set of input-output examples. The examples are provided to the 

network, processed, and the produced output is compared with the expected one. The 

parameters are updated to reduce the mismatch between the actual and expected outputs. 

 

 

Figure 3 The iterative training process for RNNs. 

In particular, first a loss function ℒ is chosen as a scalar measure of the discrepancy between 

actual and expected outputs. Then, finding the optimal values for the parameters 𝐕, 𝐖, and 𝐔 

boils down to solving a minimization problem: 

arg min
{𝐕, 𝐖, 𝐔}

∑ ∑ ℒ (�̅�(𝑖)(𝑡), 𝐲(𝑖)(𝑡))

𝑁

𝑡=1

𝑁𝐷

𝑖=1

= arg min
{𝐕, 𝐖, 𝐔}

𝐸, 

in which we have denoted with �̅�(𝑖)(𝑡) and 𝐲(𝑖)(𝑡) respectively the expected and actual output 

at time 𝑡 for the 𝑖-th example in the dataset. 

The minimization problem, which in general involves a non-convex surface, can be solved 

iteratively by computing the gradients of the error 𝐸 with respect to all parameters and taking 

steps in the parameter space by a method known as Gradient Descent. 

The process of Gradient Descent is illustrated in Figure 3: the surface represents the value of 

the loss function for different parametrizations of the network (here, only two generic 

parameters θ1 and θ2 are shown). The gradient descent algorithm iteratively computes the 

gradient of the loss function and adjusts the parameters towards a direction which reduces the 

error. A single update of a generic parameter 𝜃 is described by: 

Δθ = −η
∂𝐸

∂θ
, 

where η is a scalar learning rate, a hyperparameter whose value is selected to support the 

learning process. 

The gradients in a RNN trained by Gradient Descent are typically computed by a technique 

named Backpropagation Through Time (BPTT). The name comes from the fact that the 

computation of the gradients, which is performed by decomposition via the chain rule, must 

propagate from the final time step back to the beginning of the computation. 



TEACHING D4.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 16 - December, 2020 

While often very effective, training a network by BPTT is quite expensive both in terms of time 

and computational resources. In fact, hardware accelerators (such as GPUs or TPUs) must be 

employed in many practical situations in order to obtain reasonable training times. This makes 

it impractical to adopt BPTT with Gradient Descent in embedded application on low-power 

devices. As such, in these contexts, alternative, more efficient training algorithms must be 

employed (see, for example, the reservoir computing paradigm described in Section 2.1.2). 

Moreover, BPTT does not suit well to applications involving distributed learning scenarios: 

also in these contexts, alternative training algorithms or techniques should be taken into 

account. Finally, when training RNNs via BPTT and Gradient Descent it must be kept into 

consideration the potential issue of gradient vanishing or explosion [11], which may make 

training difficult over long input sequences. 

2.1.2. Reservoir Computing 

Reservoir Computing (RC) [6] is a paradigm for learning models in which the input sequences 

are mapped into a high-dimensional, non-linear system that is called reservoir. The key 

characteristic of the approach is that the reservoir is fixed, i.e., its parameters are not adjusted 

by training. After a sequence has been mapped into a vector by the reservoir, a readout 

component reads it to produce a prediction. The parameters of the readout are the only ones in 

the model to be subject to training, and this allows to have a relatively simple readout 

component that does not depend on temporal dynamics, thus avoiding many of the associated 

challenges. These include the general problem of credit assignment (i.e., which activations were 

responsible for the error or success of the network?), and the issues of gradient vanishing or 

explosion. 

The reservoir in RC systems can be implemented in a multitude of ways, from developing 

artificial dynamical systems to exploiting the intrinsic computational power of physical systems 

or substrates [12]. For example, a reservoir can be implemented by a grid of semiconductor 

optical amplifiers and photodetectors for reading the light signals by the readout, with 

advantages in terms of low power consumption and extremely fast computation. Finally, the 

most popular option is to employ a RNN as a reservoir: in this case we use the term Echo State 

Networks. 

2.1.3. Echo State Networks 

 

Figure 4  Schematic representation of an Echo State Network. 

Echo State Networks (ESNs) [13] [14] are a RC model in which a properly initialized RNN is 

used as the reservoir (see Figure 4). In fact, the evolution of the internal state of the reservoir 

in an ESN is described as for a RNN, i.e.: 

𝐡(𝑡) = 𝑡𝑎𝑛ℎ(𝐕𝐱(𝑡) + 𝐖𝐡(𝑡 − 1)). 
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Here, however, the matrices 𝐕 and 𝐖 are randomly initialized and then kept fixed, without 

training. 

In ESNs, the readout is also typically implemented as a linear layer: 

𝐲(𝑡) = 𝐔𝐡(𝑡). 

As such, the readout can be trained with efficient direct methods like Moore-Penrose 

pseudoinversion or Ridge Regression. While the equations describing the computations of the 

model are identical to those of a RNN, avoiding training the recurrent part of the model offers 

significant advantages in terms of efficiency. 

In Figure 4 it is illustrated a schematic representation of an ESN. On the left, the input 𝐱(𝒕) is 

fed to the reservoir, whose activations are denoted with 𝐡(𝑡). Finally, the activations of the 

reservoir are fed to the readout layer. 

UNIPI has made available several implementations of ESNs (and of deep variants, see Section 

2.1.4 below), developed with different frameworks, including NumPy2 and TensorFlow3.  

Initialization 

The recurrent hidden layer of an ESN must be initialized in such a way to satisfy a stability 

property. In particular, the reservoir must meet the so-called Echo State Property (ESP) [13], 

which ensures that the reservoir will asymptotically wash out any information from the initial 

conditions of the system. As a stability property, the ESP makes the internal representation 

developed by the network robust to perturbations. In practice, we have both a sufficient and a 

necessary condition for the ESP, which have been proven in the context of an ESN with tanh 

as the activation function [13]: 

‖𝐖‖2 < 1  ⟹   ESP  ⟹   𝜌(𝐖) < 1, 

where 𝜌(𝐖) indicates the spectral radius of matrix 𝐖 (i.e., its largest eigenvalue in absolute 

value).  

The input-to-reservoir matrix 𝐕 can be initialized by generating a random matrix from a uniform 

distribution between −ω𝑖𝑛 and ω𝑖𝑛, where 𝜔𝑖𝑛 ∈ ℝ+ is a hyperparameter. For the reservoir 

matrix 𝐖, in order to satisfy the ESP it is sufficient to randomly generate a matrix and then 

rescale its norm such that it is less than unity. Moreover, the reservoir matrix 𝐖 is typically 

sparse: it is not uncommon to have less than 20% of connectivity. 

Leaky ESN 

A notable variant of a basic ESN is denoted as leaky ESN. The reservoir of a leaky ESN uses 

leaky-integrator neurons [15], which act as a lowpass filter whose leaking rate is determined 

and fixed at model selection time. In this case, the state transition function is modified as: 

𝐡(t) = (1 − 𝑎)𝐡(𝑡 − 1) + 𝑎 𝑡𝑎𝑛ℎ(𝐕𝐱(𝑡) + 𝐖𝐡(𝑡 − 1)), 

where a ∈ ℝ is the leaking rate, under the constraint 0 < 𝑎 ≤ 1. 

In practical applications, leaky-integrator neurons are the most common choice for the reservoir 

of an ESN, as it enables dealing with fast-changing sensor data which may be collected at very 

high frequencies. 

 

 

2 https://github.com/lucapedrelli/DeepESN  

3 https://github.com/gallicch/DeepRC-TF  

https://github.com/lucapedrelli/DeepESN
https://github.com/gallicch/DeepRC-TF
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Training 

In an ESN, the only parameters that are subject to training are those in 𝐔 and thus a closed-form 

solution can be obtained by extremely fast algorithms such as ridge regression. More in detail, 

first the input sequences are fed to the reservoir. Then, the states of interest (e.g., all of them 

for sequence-to-sequence transductions, or just the last state of each sequence for classification 

tasks) are collected column-wise into a matrix 𝐇 ∈ ℝ𝑁𝐻×𝑁𝐷 . At this point the readout can be 

trained by finding a solution to the following least squares problem: 

𝑚𝑖𝑛
𝑈

‖𝐔𝐇 − �̅�‖2
2. 

Here, �̅� ∈ ℝ𝑁𝑌×𝑁𝐷 indicates the column-wise concatenation of the target vectors. A solution to 

the minimization problem can be computed in closed-form as follows: 

𝐔 = 𝐘𝐇𝑇(𝐇𝐇𝑇 + λ𝑟𝐈)−1 

where 𝑰 is the identity matrix and 𝜆𝑟 ∈ ℝ+ is a Tikhonov regularizer parameter which can be 

chosen for example by random search along with ω𝑖𝑛 and 𝜌(𝐖) (and 𝑎 in case of a leaky ESN). 

Training can also be performed in an incremental fashion, or in batches. In this case, if the 

batches are indexed by 𝑘, it is sufficient to compute the following summation of matrices: 

𝐀 = 𝐘𝐇T = ∑ 𝐀(𝑘)

𝑘

= ∑ 𝐘(k)𝐇(k)
T

𝑘

 

𝐁 = 𝐇𝐇𝑇 = ∑ 𝐁(𝑘)

𝑘

= ∑ 𝐇(𝑘)𝐇(𝑘)
T

𝑘

 

Then, the readout weights can be computed as: 

𝐔 = 𝐀𝐁−1. 

In addition to a more practical training procedure in the presence of large quantities of data, an 

incremental training also enables convenient aggregation strategies in Federated Learning 

contexts. In fact, transmitting the local matrices 𝐀(𝑘) and 𝐁(𝑘) to the centralized server in the 

federation allows it to train a readout as if all data was available locally. 

2.1.4. Advances in Reservoir Computing 

The research in the area of ESNs is quite active. One of the most attractive directions is towards 

reservoir topologies which can lead to better dynamics than those that can be obtained from a 

random reservoir. The connectivity pattern within the reservoir is defined by 𝐖, which in its 

most simple form is a sparse random matrix. However, research has shown that one can 

engineer specific connectivity patterns with the aim of reducing the stochasticity in the process, 

increasing efficiency, or reducing memory usage [16]. In the following we will review some 

advanced reservoir topologies. 

Permutation 

An important and interesting feature of orthogonal reservoir matrices is that they lead to 

networks with high memory capacity [17]. Several ways exist to build orthogonal reservoirs, 

one particularly simple of which is to use a permutation connectivity pattern. In the context of 

ESNs, this kind of topology has been empirically studied in [18], where it was shown to achieve 

good memorization skills at the same time improving the performance of randomly initialized 

reservoirs in tasks involving non-linear mappings. Interestingly, the permutation topology has 



TEACHING D4.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 19 - December, 2020 

been investigated in [19] as a way to implement orthogonal reservoir matrix structures, under 

the name of Critical ESNs. 

 

Figure 5  A “permutation” reservoir.  

In the permutation topology pattern (Figure 5) we take 𝐖 ∶= 𝑣𝐏, where 𝐏 ∈ {0,1}𝑁𝐻×𝑁𝐻  is a 

randomly generated permutation matrix and 𝑣 ∈ ℝ+ determines the spectral radius of 𝐖, i.e. 

ρ(𝐖) = 𝑣 (since 𝐖  as defined is orthogonal). The permutation pattern produces isolated 

cycles of various lengths in the connectivity. With this scheme, the space complexity of the 

reservoir matrix shrinks to 𝑂(𝑁𝐻). The reduced space complexity has positive repercussions 

also when the reservoir needs to be transmitted over the network, for example in a federated 

learning scenario. The time complexity for computing the matrix-vector product 𝐖𝐡(𝑡 − 1) in 

the state transition function also becomes linear in the number of recurrent units. Moreover, 

computing 𝜌(𝐖) for a generic 𝐖 in order to rescale it to meet the ESP is a costly operation. 

With a permutation reservoir, 𝐖 can be directly initialized with the desired spectral radius with 

zero additional cost. 

Ring 

Unlike in a permutation reservoir, in a ring reservoir (Figure 6) there is just one cycle that 

includes all units. The matrix 𝐖 is defined as for a permutation reservoir, but 𝐏 has a special 

structure (it is the identity matrix whose first row or column is displaced to the last position). 

This particular topology is a special case of the permutation topology, and as such it is also 

orthogonal. Thus, in addition to the advantages of a permutation reservoir, with this pattern the 

amount of stochasticity is reduced and the space complexity is constant.  

 

Figure 6  A “ring” reservoir. 

Reservoirs following this architectural organization have been subject of several studies in RC 

literature. Notable instances in this regard are given by the work in [16], in which the ring 

topology is studied in the context of orthogonal reservoir structures, and by the work in [20], 

where the study is carried out under the perspective of architectural design simplification for 

minimum complexity ESN construction. One interesting outcome of previous analysis on the 

ring topology is that, compared to randomly initialized reservoirs, it shows superior memory 

capacity that, at least in the linear case, approaches the optimal value [20]. While this optimal 

memory characterization has been extensively analyzed in literature for the more general class 

of orthogonal recurrent weight matrices (see e.g. [17] [21] [22]), the ring topology presents the 

advantage of a strikingly simple (and sparse) dynamical network construction. 
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Deep Echo State Networks 

 

Figure 7  A Deep Echo State Network. 

A Deep Echo State Network (DeepESN) [23] [24] extend the concept of reservoir processing 

of time-series data to the case of deep architectures. Like for the ESN, we can identify two main 

components (the reservoir and the readout) and the training procedure is basically unchanged. 

The difference is that the reservoir of a DeepESN is organized hierarchically, with multiple 

recurrent layers as shown in Figure 7. The first layer is driven by the external input, but then 

each subsequent layer takes as input the activation state of the previous one. Omitting the bias 

term for the ease of notation, the state transition function of the first layer is defined as follows: 

𝐡(1)(t) = (1 − a(1))𝐡(1)(t − 1) + a(1) tanh (𝐕(1)𝐱(t) + 𝐖(1)𝐡(1)(t − 1)), 

while for every layer 𝑙 > 1 it is defined as: 

𝐡(l)(𝑡) = (1 − 𝑎(l))𝐡(l)(𝑡 − 1) + 𝑎(l) tanh (𝐕(l)𝐡(𝑙−1)(𝑡) + 𝐖(l)𝐡(l)(𝑡 − 1)). 

The states from all the layers can be concatenated into a single, fixed-size vector to be used as 

input to the readout layer. 

The layered organization of the reservoir has been observed to determine an enrichment of the 

neural representations developed in the dynamical component, exploiting the inherent positive 

bias of depth in RNN architectural design. For instance, it has been shown that DeepESNs are 

able to produce reservoir dynamics at multiple time-scales [24] and at multiple frequencies [25]. 

This effect arises simply thanks to the architectural configuration of the reservoir: no training 

is involved, and only asymptotic stability of the deep reservoir needs to be controlled at 

initialization stage [26]. Thus, DeepESNs represent an efficient approach for learning over 

complex temporal data that exhibits different levels of time granularity. Moreover, the 

architecture of a DeepESN can be interpreted as a constrained version of a shallow ESN with 

the same total number of reservoir units, in which some of the connections are removed. Then, 

the DeepESN can represent both a simplification of the corresponding shallow ESN, and a 

convenient generalization of the whole RC approach. 
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Preliminary studies on Gated Reservoir Computing Neural Networks 

 

Figure 8  Graphical representation of the recurrent cell of a Gated ESN for a generic time step 𝒕.  

Reservoir Computing approaches like ESNs are extremely efficient in terms of training time 

and resources thanks to their use of randomly initialized parameters that do not need to be 

trained. Unfortunately, basic ESNs are also unable to effectively deal with complex long-term 

dependencies in the data, which are present whenever the target output at time step t depends 

on inputs that were fed to the network several time steps before. This weakness is closely linked 

to the concepts of fading memory and stability, thus inherently implied by the ESP in the case 

of ESNs, but in general all RNNs are affected by the problem. 

Luckily, by the use of gating mechanisms it has been shown that this problem can be alleviated 

for fully trained RNNs. For this reason, we have started investigating the problem of equipping 

ESNs with gating mechanisms [27]. This approach takes inspiration from the gated 

architectures which are popular in the context of fully trained RNNs, and in particular from the 

Gated Recurrent Unit [28]. 

In a Gated ESN, the state transition function of the reservoir is extended with gating 

mechanisms as follows (the bias terms are omitted for the ease of notation): 

𝐫(𝑡) = σ (𝐕(𝑟)𝐱(𝑡) + 𝐖(𝑟)𝐡(𝑡 − 1)) 

𝐳(𝑡) = 𝜎 (𝐕(𝑧)𝐱(𝑡) + 𝐖(𝑧)𝐡(𝑡 − 1)) 

�̅�(𝑡) = 𝑡𝑎𝑛ℎ (𝐕𝐱(𝑡) + 𝐖(𝐫(𝑡) ⊙ 𝐡(𝑡 − 1))) 

𝐡(𝑡) = 𝐳(𝑡) ⊙ 𝐡(𝑡 − 1) + (1 − 𝐳(𝑡)) ⊙ �̅�(𝑡) 

Here, 𝐫(𝑡) and 𝐳(𝑡) represent the activations at time 𝑡 of respectively the reset gate and the 

update gate. The behavior of the gates is regulated by the respective matrices (𝐕(𝑟), 𝐖(𝑟), 𝐕(𝑧), 

and 𝐖(𝑧)). The activations of the gates are applied to the previous state 𝐡(𝑡 − 1) or to the 

current candidate state �̅�(𝑡) by means of the Hadamard product (i.e., the element-wise product 

of vectors indicated by the ⊙ operator). A graphical representation of the network is illustrated 

in Figure 8. 
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The architecture of the cell is identical to the one of a GRU, however in Gated ESN the 

parameters controlling the activations of 𝐫(𝑡), 𝐳(𝑡), and �̅�(𝑡) are not trained. In the second 

variant that has been tested, the architecture is still unchanged, but the parameters controlling 

𝐫(𝑡) and 𝐳(𝑡) are trained while the dynamics of �̅�(𝑡) remain untrained. 

When all the matrices in the reservoir are left untrained, the model shows improvements in 

predictive performance with respect to a basic, non-leaky ESN, while the training cost remains 

low. On the other hand, adjusting the matrices in the gates (𝐕(𝑟), 𝐖(𝑟), 𝐕(𝑧), and 𝐖(𝑧)) via 

BPTT while keeping the rest untrained allows the model to reach significantly higher predictive 

performance. In this case, however, the training cost also increases. 

2.1.5. Applications of ESNs to sensor data processing in intelligent sensors 

As a state-of-the-art approach in the context of efficient learning in temporal domains, the 

efficacy of Echo State Networks has been tested and successfully demonstrated in numerous 

practical problems. For some examples of ESN applications see [29], [30] and references 

therein, as well as more recent works e.g. in [31] [32] [33]). The DeepESN approach also proved 

effective in a variety of domains, including Ambient Assisted Living (AAL) [34], medical 

diagnosis [35], speech and polyphonic music processing [25] [36], meteorological forecasting 

[37] [38], solar irradiance prediction [39], energy consumption and wind power generation 

prediction [40], destination prediction [41], car parking and bike-sharing in urban computing 

[38], financial market predictions [38], and industrial applications (for blast furnace off-gas) 

[42] [43]. 

More specifically, ESNs are particularly suited to applications involving low-power intelligent 

sensors and devices. For example, in clinical settings, a learning system based on ESNs has 

been developed for the automatic assessment of balance abilities in elderly people [44]. The 

model was able to perform accurate assessments from data coming from just a single balancing 

exercise.  

In the context of ambient assisted living, ESNs have been used as part of integrated and self-

organizing solutions that reduce the need of costly pre-programming and maintenance of robot 

ecologies [45] [46]. ESNs have also been successfully employed for the prediction, from noisy 

radio signal strength data, of indoor user movement [33] [47] [48] or activity [31]. 

Since the dimensionality of the reservoir has high impact on both the network performance and 

efficiency, in the context of low-power devices it is important to adopt solutions to mitigate the 

computational cost. The techniques in Section 2.1.4 lend themselves well to this purpose. For 

example, ring topologies allow to significantly reduce not only the time required for training 

and for evaluation, but also the storage and transmission cost of the reservoir matrix. This is in 

contrast with what happens in a basic ESN (and, in general, in conventional RNNs), where one 

would have to store transmit 𝑁𝐻
2 floating-point values. Additional techniques include using a 

small finite weight alphabet for the non-zero weight values [33], which reduces the number of 

bits needed for the representation. Similarly, constraining the reservoir weights to n-bit integers 

leads to drastic effects on the computational performance of the ESN without impacting the 

predictive performance [49]. 

2.2. Federated Learning 

Traditional machine learning is considered centralized, meaning that there is a single server 

which hosts both the data and the model in one place. However, there are some cases in which 

centralized machine learning is not the solution. Federated Learning (FL) in contrast, is an 

approach in which the data and the main model are separated and the model does not know any 
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specific knowledge about the data. In this approach, the data is spread among different clients 

or devices and each client has its own model [50]. Client's current model is downloaded and 

computes an updated model at the device itself using local data. In FL, collaboratively a shared 

prediction model is learnt while all the data is kept on devices. Therefore, in this approach there 

is no need to store the data in the same place as the main server in the cloud. 

The general procedure for implementing the FL are as follows: 

1. Each client downloads the current model from the main server. Configurations and 

parameters of the model for all clients are the same. 

2. Each local model in the clients is improved by learning from its own local data stored 

in the local devices. 

3. Updates to the local model, such as model parameters, are sent back to the main server 

in the cloud. Only this update to the model is sent to the cloud, e.g., using encrypted 

communication. 

4. Sent updates are immediately averaged with other user updates to improve the shared 

model. The training data are kept in the devices, and no individual updates are stored 

in the cloud. 

The main benefit of FL is ensuring privacy. Not only the main server, but also each client does 

not have any knowledge about individual training data, therefore, privacy is ensured to be 

preserved. Second benefit is that models become smarter, since they do not have to rely on only 

local data which are much less and unbalanced with respect to all other client's data. There are 

some aspects that must be taken into account for designing such a mechanism: 

• the number of parameters of each local model should be small, since clients are limited 

in terms of computational power; 

• the number of parameters effects amount of information transmitted server and clients; 

• the goal is not to achieve better performance compared to centralized models, but rather 

to show it can achieve similar performance. 

Traditional FL approaches rely on simple averages if the models’ parameters transmitted from 

the clients to the server. For our purposes, we find it particularly intriguing that in the case of 

ESNs, where training is restricted to a simple linear layer in the neural network, it is possible 

to rely on the compositionality/incrementality of the training process (as illustrated in Section 

2.1.3) to compute an exact configuration of the trainable weights as if all of the training data 

were available in one single place. In practice, each client k can locally compute its own 𝑨𝒌 and 

𝑩𝒌 matrices based on the locally available data. These matrices get summed in the server, which 

can finally compute the output weights in closed-form. This approach is further described in 

Section 5.1, along with preliminary results in human state monitoring applications. 

2.3. Continual Learning 

Data coming from real world experience is generated by processes which change dynamically 

over time [51]. Dealing with non-stationary distributions means being able to adapt to drifts 

that may occur at any time, either abruptly or gradually. The effect of a drift in the generating 

process may be immediately evident in the observable data or it may require some time. Drift 

can last for a long time, thus establishing a new normality, or it can vanish quickly after it 

appeared. Finally, the same change occurred at a certain point in time may reoccur later 

(recurring concepts), thus requiring recall of previous knowledge. The field of Continual 

Learning (CL) [52], also called Lifelong learning, focuses on learning a potentially infinite 
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sequence of different tasks without forgetting previous knowledge. The Catastrophic Forgetting 

(CF) phenomenon is one of the main challenges faced by Continual Learning.  

Real world applications require to deal with a continuous stream of mutable information, whose 

nature is not known a priori. Continual Learning is of utmost importance for such applications, 

since it equips predictive models with the ability to adjust to changes in the input stream and, 

at the same time, to consolidate already acquired knowledge. Without CL capabilities, even a 

subtle drift in the input would require retraining the entire predictive model with both new and 

old data. The training procedure, however, is often very costly and time consuming: until the 

new model is ready to be deployed, incoming drifts could cause a large drop of the 

performances in the old model, with potentially serious consequences. Moreover, retraining is 

unnecessary, since most of the information needed is already inside the model. Therefore, the 

best solution is to let the model learn continuously by keeping forgetting under control with CL 

techniques, thus avoiding the need of retraining. 

A standard supervised CL setting is the class of incremental setting [53] [54], where the dataset 

is split into multiple tasks, each of which introduces new classes. In the Domain Incremental 

setting [53] the number of classes is fixed but the underlying distribution generating each class 

is subjected to drifts. 

To monitor a CL experiment, different metrics can be computed. The simplest one is the 

average accuracy over all the encountered tasks. If CF effects are in place, average accuracy 

should decrease as learning progresses. Accuracy on the current task can be used to monitor the 

orthogonal requirement of learning new tasks. In fact, CF could be easily prevented by freezing 

the model to a previous state. Although capable of perfect recall, such model would not learn 

anything new. 

CL does not only focus on CF. Since the model is learning a sequence of tasks, it is also useful 

to monitor the effect of learning on previous and, also, future tasks [55] [56]. 

The Backward Transfer [56] measures to what extent learning the current task improves 

performances on previous ones. Correspondingly, Forward Transfer [56] measures to what 

extent learning the current task affects future ones. 

Computational efficiency is also an important factor in the evaluation of CL experiments. In 

particular, training time and model size or, more in general, memory occupancy characterize in 

which conditions a CL algorithm can scale and adapt to real world. 

2.3.1. Continual Learning Strategies 

The main objective of Continual Learning (CL) is to prevent catastrophic forgetting of previous 

knowledge when learning a sequence of different tasks [57] [58] [59]. This requires finding a 

trade-off between model’s stability (the ability to preserve existing knowledge) and plasticity 

(the ability to acquire new information) [60] [61] [62]. 

Regularization strategies try to enforce stability on model’s parameters by adding a penalization 

term to the standard loss function [63] [64] [65] [66]. Elastic Weight Consolidation (EWC) [67] 

computes the importance of each parameter for the current task by using the gradient of the loss 

averaged over each input sample. At training time, the penalty term keeps parameters close to 

their previous value in proportion to their importance. Online, more efficient variants of EWC 

have been proposed in [68] [69]. Learning without Forgetting [63] adopts a different approach 

than EWC: it prevents large drifts in output activations by using the predictions of previous 

versions of the model as soft targets in a distillation loss [70]. 
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Architectural strategies enhance model’s plasticity by enabling dynamic expansion during 

training. Forgetting is mitigated by inhibiting learning on old components. The type of 

expansion ranges from adding single units [71] [72] to stack entire networks next to the existing 

architecture [73] [74]. Architectural strategies may also exploit pruning techniques to reuse 

parameters which are redundant for the current task [75] [76]. 

Replay strategies keep an internal memory in which to store previously encountered patterns. 

The content of the memory is added to the current training set to prevent forgetting. Patterns to 

be included in the memory can be chosen at random or by following specific criteria [77] [78]. 

If the number of tasks is large, replay strategies have high memory requirements. 

In order to mitigate this disadvantage, generative replay is often employed [79] [80]. In this 

setting, a generative model like a Generative Adversarial Network [81] is trained to approximate 

the current task distribution. Then, it is used to generate inputs similar to previous patterns. 

Therefore, the replay memory size corresponds to the size of the generative model and no longer 

depends on the number of tasks. 

Even if regularization, architectural and replay strategies are the most common ones, there are 

other approaches which look promising: from Bayesian learning [82] [83] to spiking neural 

networks [84] [85] and ESN [86]. Ultimately, the choice of a specific CL strategy strongly 

depends on the application it is intended for and on the constraints, it has to satisfy. 

2.4. Metrics for Neural Networks’ Dependability & Safety 

2.4.1. Safety critical aspects in Neural Networks 

In the last few years, the automotive market is facing a new challenge related to self-driving 

vehicles. The key elements that allow autonomous driving are software elements that shall 

analyze single images or a series of images (frames) making up a video to recognize objects, 

learn from people’s personal habits to provide the driving style that best suits the involved 

person, decide the best thing to do in relation to the current situation and so on. To accomplish 

all of these tasks ML based models are used. 

Software elements based on ML techniques might include NNs of several kinds. The important 

aspect to stress is that all these software elements use ML techniques to learn from a collection 

of data and to provide the best answer or output. This feature makes them different from the 

traditional software where a programmer decides how the software should behave. 

The uniqueness of the characteristics of a ML model makes this kind of software different from 

the traditional software and this implies problems when this software is used in safety critical 

applications such as those related to autonomous driving. 

A safety critical point of all ML models is about their non-transparency [87]; they contain 

knowledge in an encoded form, but this encoding is harder to interpret for humans. 

A further safety issue affecting ML models is that they typically do not operate perfectly and 

exhibits some error rate [87]. Thus, “correctness” is not always ensured, but there is only a 

statistical guarantee about the reliability of answer of a ML model. 

ML models as NNs are based on supervised learning and they are trained using a subset of 

possible inputs that could be encountered operationally. This is the cause of another safety issue 

because the training set is necessarily incomplete and there is no guarantee that it is even 



TEACHING D4.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 26 - December, 2020 

representative of the space of possible inputs. In addition, learning may overfit a model by 

capturing details incidental to the training set rather than general to all inputs [87]. 

All these characteristics of the ML models make them not suitable to be designed and assessed 

according the Functional Safety standard for road vehicles ISO 26262. 

The ISO 26262 recommends the use of a Hazard Analysis and Risk Assessment (HARA) 

method to identify hazardous events in the system and to specify safety goals that mitigate the 

hazards. Each safety goal will be characterized by an ASIL, a level of safety measure that shall 

be ensured. From each safety goal are derived the requirements that shall be developed to realize 

HW parts and SW parts with the required ASIL [87]. 

The development of the software part follows the well-known V model for engineering shown 

below in Figure 9. 

 

Figure 9  ISO 26262 part 6 - Product development at the software level 

All these considerations led to the need to develop a methodology that would allow to evaluate 

the safety of an ML model in the family of NNs. These needs have led to the definition of the 

concept of dependability and its application to NNs in order to evaluate their efficiency under 

different points of view that involve also the safety. 

In addition, the dependability allows to evaluate also security aspects; this shall be taken into 

account because some security issues can cause safety issues. 

2.4.2. What is Dependability and its relationship with safety 

In general, dependability can be defined as the credibility of a system, i.e., the degree of trust 

that can reasonably be placed in the answer of the system performing a particular task. 

The concept of dependability can be applied in general to each system or functionality but it 

has been analyzed and directed to be applied to NNs [88]. The fulfillment of dependability by 

a NNs ensures that a certain degree of safety is achieved. For this reason, the concept of 

dependability can be effectively applied to evaluate the safety of all kinds of NNs whose failure 

could have serious consequences on the people’s health. 

The attributes that a dependable system must have are: Robustness, Interpretability, 

Completeness and Correctness [88]. These attributes are also indicated with the acronym RICC, 

where each letter is the initial one of each attribute. 

Here, is described the meaning of each attribute applied on a NN. 
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• Robustness: indicates how a NN is robust against various effects such as distortion or 

adversarial perturbation (which is closely related to security). 

• Interpretability: indicates the understanding of what a NN has actually learned. 

• Completeness: indicates if a NN has used training data possibly covering all important 

scenarios. 

• Correctness: indicates how a NN is able to perform its task without errors. 

Each of these attributes is closely related to the concept of safety. 

Each safety related function shall be robust: this means that applying distortions or adversarial 

perturbations to the system, the function shall ensure that will not occur unforeseen behavior 

that can affect the safety of the involved persons [88]. This attribute is closely linked to the 

concept of stability of a NN concerning the initialization of an ESN. 

Another attribute that each safety related function must have is the interpretability: the designer 

shall be aware of what the NN has learned and what the NN has not learned; in this way he can 

evaluate if the NN has the right knowledge of all those situations that if not correctly recognized 

could cause a physical harm to the involved people [88]. 

The third attribute that is related to the safety is the completeness; it is important to understand 

if the data used to train the NN model covers also those scenarios classified as potentially safety 

critical [88]. 

The last attribute regards the correctness; from a safety point of view this attribute ensure that 

the safety critical tasks are performed correctly [88]. 

Each NN dependability attribute can be estimated by determining a computable set of NN 

specific metrics. In Figure 10 we report all the metrics and their relationship with the 

dependability’s attributes. 

 

Figure 10  Relations between RICC attributes and the metrics. 
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2.4.3. Dependability evaluation metrics 

The state-of-the-art concerning the calculation of metrics to quantify the dependability of ML 

models is still in its infancy. An approach which is enjoying good success is the one proposed 

in [88] where the metrics consider NNs models working on images. This approach can be 

suitable also in case we use time series data such as video streaming because the latter consist 

of series of images. Considering our context, we shall take into account that also other types of 

data coming from CPSoS (such as data streams coming from external vehicle sensors) are 

treated. However, some of the following metrics can be applied to different types of data 

because they give an output value by analysing the internal structure of the NN while this last 

is running; for example, they calculate the number of neurons activated with a given test set. 

On the other hand, the evaluation process of other metrics may need some adaptations. For the 

sake of simplicity in the following is shown the state-of-the-art in the same context considered 

in literature. 

 

A. Scenario coverage metric 𝑀𝑠𝑐𝑒𝑛𝑒  

𝑀𝑠𝑐𝑒𝑛𝑒 : metric to compute the scenarios quantity covered in the training step. 

For example given scenario there is a list 𝐶 = 𝐶1 , … , 𝐶𝑛 of operating conditions (e.g. 

weather condition, road condition, etc.), let 𝐶1 = {𝑠𝑢𝑛𝑛𝑦, 𝑐𝑙𝑜𝑢𝑑𝑦, 𝑟𝑎𝑖𝑛𝑦} represent the 

weather condition, 𝐶2 = {𝑠𝑡𝑜𝑛𝑒, 𝑚𝑢𝑑, 𝑡𝑎𝑟𝑚𝑎𝑐} represent the road surfacing and 𝐶3 =
{𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑐𝑢𝑟𝑣𝑦} represent the incoming road orientation. Then (𝑠𝑢𝑛𝑛𝑦, 𝑠𝑡𝑜𝑛𝑒, 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡) and 

(𝑟𝑢𝑖𝑛𝑦, 𝑡𝑎𝑟𝑚𝑎𝑐, 𝑐𝑢𝑟𝑣𝑦) constitute two possible scenarios (see Figure 11). Since that to check 

the coverage of all possible scenarios is not feasible due to combinatorial explosion, the 

scenario coverage metric proposed is based on the concept of 2-projection. 

To compute the metric shall be prepared a table recording all possible pairs of operating 

conditions (e.g.: road surfacing-weather, road orientation-weather and road surfacing-road 

orientation) and their possible values (e.g.: values of weather: sunny, cloudy, rainy). Then shall 

be filled all the cells of the table according the considered scenarios. 

 

Figure 11  Computing scenario coverage metric via 2-projection table 

The metric value will be the ratio between occupied cells and the total number of cells: 

𝑀𝑠𝑐𝑒𝑛𝑒 ∶=  
# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡

# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑓𝑟𝑜𝑚 2 − 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑏𝑙𝑒
 

In the provided example the value of the metric is: 

𝑀𝑠𝑐𝑒𝑛𝑒 ∶=  
2 + 2 + 2

9 + 6 + 6
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The scenario coverage metric affects completeness and correctness attributes of RICC. 

 

B. Neuron k-activation metric 𝑀𝑛𝑒𝑢−𝑘−𝑎𝑐𝑡  

In a similar way to the previous metric, this metric observes the activation of neurons. One 

combination of neuron activation in the same layer can be compared to one scenario. In the 

same way to the case of the scenarios, all the combination of all neurons in the same layer 

generates a combinatorial explosion; for example, for a layer of 256 neurons there is a total of 

2256 scenarios to be covered. Considering a specific layer to be analysed with c neurons and 

selecting an integer constant k, the metric can be calculated with the formula: 

𝑀𝑛𝑒𝑢−𝑘−𝑎𝑐𝑡 ∶=  
# 𝑜𝑓 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡

(𝑐
𝑘

) (2𝑘)
 

where the denominator represents the number of cells. 

The neuron k-activation metric impacts completeness and correctness attributes. 

 

C. Neuron activation pattern metric 𝑀𝑛𝑒𝑢−𝑝𝑎𝑡𝑡𝑒𝑟𝑛  

While k-activation metric captures the completeness, the neuron activation pattern metric is 

used to understand the distribution of activation. For inputs within the same scenario, intuitively 

the activation pattern should be similar, implying that the number of activated neurons should 

be similar. 

To calculate the metric the user shall consider an input set 𝑿 consisting of images belonging to 

the same scenario and shall specify a layer of the NN (with c neurons) to be analyzed. Moreover, 

the user shall select from the input set X, a number 𝛾 of groups constituting a partition of the 

input set 𝑿. For each input of each group 𝐺𝑖(𝑿), with 𝑖 𝜖 {1, … , 𝛾}, the number of activated 

neurons in the specified layer shall be within the range [
𝑐

𝛾
(𝑖 − 1),

𝑐

𝛾
(𝑖)]. 

Considered 𝐺𝑗(𝑿) the largest set among 𝐺1(𝑿), . . . , 𝐺𝛾(𝑿), the metric is evaluated by 

considering all inputs whose activation pattern, aggregated using the number of neurons being 

activated, significantly deviates from the majority. The neuron activation pattern metric can be 

calculated with the formula: 

𝑀𝑛𝑒𝑢−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∶=  
∑ |𝐺𝑖(𝑿)|𝑖 ∶𝑖 ∉ {𝑗−1,𝑗,𝑗+1}

|𝑿|
 

This metric reflects the robustness and completeness attribute 

 

D. Adversarial confidence loss metric 𝑀𝑎𝑑𝑣 

This proposed metric adversarial confidence loss metric is useful in providing engineers an 

estimate of how a NN is robust. To provide a perturbed input, shall be chosen a parameter 𝜖 

specifying the allowed perturbation and a set of perturbation techniques 𝑇𝑖. The function  

𝑇𝑖(𝑥, 𝜖) gives in output a transformation of the perturbed input, while 𝒚(𝒙) and 𝒚(𝑇𝑖(𝒙, 𝜖) 

calculate the output of the NN respectively with the original input and with the perturbed and 

transformed input. 
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The equation to calculate the adversarial perturbation loss metric is: 

𝑀𝑎𝑑𝑣 ∶=  
∑ 𝑚𝑖𝑛𝑖 ∈ {1,…,𝑁}𝒚(𝑇𝑖(𝒙, 𝜖)) − 𝒚(𝒙)𝑖𝑛 ∈ 𝐼𝑛

|𝑿|
 

The metric impacts robustness and correctness. 

 

E. Scenario based performance degradation metric 𝑀𝑠𝑐𝑒𝑛−𝑝𝑒𝑟𝑓−𝑑𝑒𝑔𝑟 

Here can be used common performance metrics and detailed analysis considering each scenario 

can be performed. For missing input scenarios, the value of the metric can be discounted with 

a discount factor that can be taken from the computed scenario coverage metric. Example of 

commonly used performance metrics are validation accuracy and quantitative statistic measures 

such as MTBF (Mean Time Between Failures). 

 

F. Interpretation precision metric 𝑀𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡  

This metric is aimed to evaluate if a NN for object detection makes its decision on the correct 

part of a single image or of a series of images (frames) making up a video. 

When the NN is running, there is a probability p to correctly classify an object (obtaining a 

bounding box in the case of object detection). Then shall be calculated an occlusion sensitivity 

heatmap H where each pixel of the heatmap ℎ ∈ 𝐻 maps to a position of the occlusion on the 

image. 

Defined as 𝑃ℎ𝑜𝑡 the set of pixels that are classified as belonging to the object and 𝑃𝑜𝑐𝑐𝑙𝑢𝑑𝑖𝑛𝑔 the 

set of pixels constituting the object, the metric is computed as follows: 

𝑀𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 ∶=  
|𝑃ℎ𝑜𝑡 ∩ 𝑃𝑜𝑐𝑐𝑙𝑢𝑑𝑖𝑛𝑔|

|𝑃ℎ𝑜𝑡|
 

The interpretation precision metric affects the interpretability and correctness attributes. 

 

G. Occlusion sensitivity covering metric 𝑀𝑂𝑐𝑐𝑆𝑒𝑛 

This metric tells us the ability of the network to recognize the object also if several parts of the 

images (frames) making up a video are occluded. The occlusion sensitivity covering metric is 

given by: 

𝑀𝑂𝑐𝑐𝑆𝑒𝑛 ∶=  
|𝑃ℎ𝑜𝑡 ∩ 𝑃𝑜𝑐𝑐𝑙𝑢𝑑𝑖𝑛𝑔|

|𝑃𝑜𝑐𝑐𝑙𝑢𝑑𝑖𝑛𝑔|
 

A high value of the metric implies that many positions of small occlusions can lead to a 

detection error. A low value of the metric implies that there is a greater chance of still detecting 

the object when it is partly occluded. 

Occlusion sensitivity covering metric impacts robustness and interpretability attributes. 

H. Weighted accuracy/confusion metric 𝑀𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 
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The goal of this metric is to assign different severity according the type of error that occurred. 

The severity of an error of a NN is not always the same. For example, confusing a pedestrian 

for a tree is more critical than in the opposite way. So, this metric considers different penalty 

terms as weights to capture different classification misses. 

This is a general technique already used to evaluate ML algorithms but here the weights are 

determined. 

Table 2 provides a summary over penalties to be applied in traffic scenarios. 

Table 2  Qualitative severity of safety to be reflected as weights 

A is classified to B B (pedestrian) B (vehicle) B (background) 

A (pedestrian) n.a. (correct) ++ ++++ 

A (vehicle) + n.a. (correct) +++ 

A (background) + + n.a. (correct) 

 

The table assigns the highest penalty when a pedestrian (or bicycle) is incorrectly recognized 

as a background image (i.e., no object exists), as pedestrians are not protected, and it may easily 

lead to life threatening situations. 

The metric gives indications about the correctness attribute. 

2.5. Human State Monitoring (HSM) and perspectives  

In the last decade, HSM is gaining interest from the scientific community and is mainly based 

on the analysis and fusion of multiple physiological signals. Physiological signals represent a 

rich source of information to address tasks such as Emotion Recognition (ER), Human Activity 

Recognition (HAR), Healthcare Applications (HA) such as Heart Diseases Classification 

(HDC) or Stress Detection (SD), Workload Detection (WLD), etc. Among the many published 

papers, several survey works attempt to provide a general picture of the field. These surveys 

focus on ER [89] [90], HAR [91], HA [92], and the application of DL techniques to 

physiological signal data [93]. 

The aspects of the human state that can be monitored fall into three main classes that will be 

discussed in more detail in the sections that follow: stress/discomfort, attention/distraction and 

fatigue detection. 

2.5.1. Human in the loop 

Aiming on advancing the orientation of current autonomous vehicles state-of-the-art, we 

introduce the aspect of human-machine collaboration, which refers to the development of more 

human-centered modules that put the human into the loop of the autonomous driving processes. 

In these terms, we emphasize on the symbiotic relation of drivers and self-driving vehicles, 

attempt to record all the parameters of this composite problem, and examine how HSM can be 

beneficial in this collaboration. The utter aim is to bring humans in this decision-making loop 

and to develop the ground for personalized solutions that will automatically align the machine 

behavior to the human preferences in any given circumstance. 
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For this purpose, in contrast to all current works in the field, the output of the human state 

monitoring process is not directed to the human operator in the form of alert, or to another 

human that is taking decisions. It is redirected to the system itself, in our case the autonomous 

vehicle, which will adjust its behavior using human state as an additional input, along with the 

vehicle and the environment status (road condition, obstacles etc.) as depicted in Figure 12. In 

these terms, we propose an enhanced perception system that is also affected by the 

physiometrics generated from the sensors that identify the driver state. The enhanced perception 

system in turns feeds the UGV control system with additional metrics like the stress level, the 

comfort or the attention of the driver/operator that are not currently taken into account by the 

UGV, providing the space for more personalized personalized behavioural control of the 

autonomous vehicle. 

 

 

Figure 12: The proposed unmanned ground vehicle (UGV) control system that enhances extra input information 

(e.g., the driver’s state, road conditions and weather context) into the vehicle control loop. 

 

2.5.2. HSM tasks 

With respect to the different aspects of the human state monitoring tasks, we focus on the case 

of autonomous cars emphasizing on the human-centric tasks, that could also be applied in the 

case of avionics under circumstances. In this direction, in the subsections that follow we divided 

the aspects being monitored into three status detection classes: stress/discomfort, 

distraction/attention and fatigue. 

• Detecting user stress/discomfort 

In a more general context, several research works employ physiological signals for identifying 

drivers'/operators' emotional state under varying conditions. In [94] authors combine several 

physiological signals for detecting drivers’ mental workload in driving simulators, whereas in 

[95] the Heart Rate variability is the main factor for evaluating the mental load of professional 

drivers/operators. Another interesting problem that involves the state monitoring of users in 

driving scenarios and that has attracted the interest of the research community is the emotion 

recognition of vehicle drivers and passengers [96] [97]. 

Another group of related works focuses on the perceived comfort levels and the metrics that 

can be used for detecting them [98]. These comfort levels have been associated with human 

driving styles which are broadly categorised to comfortable (maximum perceived comfort), 

everyday driving, and dynamic (minimum comfort). The metrics are used for classifying every 

driving maneuver (deceleration, acceleration, lane change, follow at varying speed) to one of 
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the above styles. The input to these metrics mostly comes from vehicle-boarded sensors and is 

not directly refers to human state monitoring. The user personality is recorded with 

questionnaires and an association is performed between personality groups and driving styles 

[99]. However, such works are strongly related to the study of cyber-physical systems examined 

from the cyber perspective, which is complementary to the human one. Moving-base 

simulations are used for studying driving comfort in autonomous vehicles [100].  In such 

simulated scenarios, no input was asked from the driver, and comfort was mainly associated 

with vehicle-related factors, such as the gradient and the initial value of time to the minimum 

distance. However, the steering wheel and pedals were monitored, in order to record any driver 

input, which can be considered a sign of low comfort.  

The perceived comfort level is subject to the human perception of the vehicle and its 

environment, as well as to the internal beliefs, preferences and expectations. Several studies on 

passenger comfort (or stress), fuse data from a large variety of sensors attached to the vehicle 

(e.g., accelerometers, gyroscopes etc). Then they attempt to detect the driving style of the driver 

and associate it to the driver/passengers' comfort or stress level.  

The common baseline that most of the aforementioned tasks share is the input data that make 

use of. Mainly there are three main types of input data that may be available:  

1. the state of the vehicle itself, 

2. the driver's performance and 

3. the driver's state 

The state of the autonomous vehicle refers to the vehicle's environment during the drive and is 

based on the vehicle’s integrated equipment that tracks the outward context based on sensors 

and cameras either integrated to the vehicle or attached by the driver whilst the driver's 

performance is inferred from vehicle's data like speed, acceleration, deceleration rate, inter-

vehicle distance and more. For identifying the state of the driver/operator most commonly 

physiological measures exploited are Heart Rate (HR), Electrocardiography (ECG), 

Electroencephalography (EEG), Electromyography (EMG), Electrodermal Activity (EDA), 

also known as galvanic skin response or skin conductance, Blood Volume Pulse (BVP), Skin 

Temperature (ST), Respiration (RSP), and Gaze Detection (GD), which are derived using either 

inwards monitoring cameras or physiological sensors, smart wearable devices, etc. 

 

• Detecting distraction 

The multi-modal sensing of the human state employs a wide variety of inputs, from visual, 

speech, and text to physiological signals. The early or late combination of signals to composite 

features and the temporal evolution of those features (time-series) and the training of the 

appropriate models is the main process used for the various human state detection tasks. Fusion 

techniques such as PCA, LSCE, etc, are frequently used for the joint analysis of eye-tracking, 

EEG, skin conductance, and other data and their association with user states of stress, 

drowsiness, or distraction in an attempt to bring human in the loop [101] [102]. 

In the case of assisted driving, it is more than obvious that attention is a key concept, referring 

to the driver as a direct machine operator or to the passengers. Regarding the former case, 

detecting driver's distraction [103] and drowsiness [104] is the most popular classification task 

related to driver state monitoring.  

In the same driving context, the automatic identification of the driver's workload level [105] 

and the detection of stress level that it creates [106] [107] is just another human state monitoring 

task. The monitoring of the driver's physiological features and the correlation of their changes 
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with various kinds of stress that occur during the driving is the main challenge of the related 

works [108] [109]. 

In the case of autonomous driving vehicles, the tasks of detecting attention or fatigue are of 

limited applicability, since they are not so critical for driving safety, as in unassisted driving 

[110]. However, passengers' comfort is strongly correlated to the driver's driving style (i.e. 

acceleration and braking behaviour) [111] [112], which also applies even in the case of 

autonomous driving. The most prevalent task, in self-driving vehicles, becomes the evaluation 

of the driver's and passengers' stress levels in the presence of various stressors and in relation 

to the vehicle driving conditions. Authors in [106] use multiple bio-signals and an explicit stress 

signal for the driver in order to train a stress detector. Authors in [113] use a bio-electric 

physiological signal as input from the driver and Self Organizing Map techniques for 

distinguishing between low, medium, and high-stress driver states.  

In the case of human-machine collaboration, the proper monitoring of user state is important 

for the successful execution of the collaborative activity (e.g., vehicle drivers, machine 

operators, construction workers) the main focus is on the detection of vigilance or loss of 

attention (distraction). When users are exposed to various risky and stressing situations, their 

level of attention is evaluated using wearable sensors (e.g. (EEG), (GSR) for measuring 

sweating levels or (ECG) for measuring heart rate) and cameras.  

 

• Detecting fatigue 

Identifying driver's lack of attention has been widely explored and is strongly related to fatigue 

but differs in the sense that driver’s attention may be reduced by various means (such as mobile 

phones etc.) that are not related to fatigue.  

Fatigue (physical or mental) is generally defined as the set of symptoms that affect human 

performance or disables a man from completing an activity [113]. Based on this concept, many 

algorithms and systems have been proposed and adopted in various brand's automobile driving 

assistants that track drivers state, identify drivers’ fatigue, and alerts them accordingly (i.e., to 

take a short break from driving) [114] [115].  

For example, in the case of truck drivers who perform repetitive activities for longer periods, 

brain and heart signals are used to detect mental fatigue or stress due to an increased mental 

workload. It is also essential to distinguish between wakefulness, drowsiness, loss of 

consciousness, and sleep status [104] as will be explained in the following. 

2.5.3. HSM task formulation 

All the above HSM tasks can be broadly presented in four main axes: emotion, attention, stress, 

comfort, as depicted in Figure 13. 

All the aforementioned approaches have a common task formulation, which takes as input a 

collection of k time-series for user (i) 𝑆(𝑖)(𝑡) = {𝑠1 , 𝑠2 , ⋯ , 𝑠𝑘 },  at time t, where each time-

series is of length t (𝑠𝑗 =< 𝑠𝑗 (1), … , 𝑠𝑗 (𝑡) >), and a (possibly empty) set of values that 

correspond to user-related features 𝑈 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚} and produces an output value 𝑦(𝑖)(𝑡) 

which corresponds to the perceived state level of the monitored human subject (i) at time t and 

is either a continuous or discrete value (i.e. level): 

𝑦(𝑖)(𝑡) = 𝑓(𝑆(𝑖)(𝑡), 𝑈) 
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The learning task is usually formulated as an error minimization task, where the error in the 

output is defined on the difference between the output value 𝑦(𝑖)(𝑡) and the actual user state 

level �̅�(𝑖)(𝑡) at time t. 

 

 

Figure 13: Summary of HSM tasks with respect to the inputs each task broadly uses. 

In stress detection for example, 𝑆(𝑖)(𝑡) could contain the physiological signals of the subject 

(i), while 𝑈(𝑖) may represent user-specific features such as the average skin conductivity in the 

relaxed state, which can allow to use the same 𝑓 to perform stress level recognition for a 

diversified set of subjects. 

The inferred stress level can be represented as a continuous scalar value; in practice, however, 

it is often more practical to classify the stress level within a given number of macro-categories 

such as “low”, “medium”, and “high” [106], or “stressed” and “relaxed”. 

In discrete state prediction tasks, such as the detection of driver's emotions, the output vector 

𝑦 ∈ ℝ𝑛, where 𝑛 is the number of core emotions (happiness, sadness, surprise etc.) 

0 ≤ 𝑠𝑡𝑎𝑡𝑒𝑥 ≤ 1  ∀ 𝑥 ∈ [1, 𝑛] 

is processed to indicate different levels of intensity for each x of the 𝑛 emotions, instead of 

continuous values between 0 and 1. This is extended in the task of emotion valence and arousal 

detection, where the dimensional emotional model associates the emotions of fear and sadness 

to low levels of arousal and negative valence, and happiness with high arousal and positive 

valence. In this case, the emotional state is a 2-dimensional vector 𝑠𝑡𝑎𝑡𝑒 ∈ ℝ2, where: 

−1 ≤ 𝑠𝑡𝑎𝑡𝑒𝑥 ≤ 1  ∀ 𝑥 ∈ [1, 𝑚]. 
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2.6. Learning user’s behaviour towards autonomous driving personalization 

2.6.1. Human like driving background 

The vision of a human-like driving of autonomous vehicles is not new and its main objective is 

to design a process of anthropomorphic adaptation to new situations [116]. The emotion model 

is based on sensor processing and interpretation modules that define human emotions in an 

abstract level (such as those defined in the Human State Monitoring subsection). In the early 

work of [116] the personalisation relies on the emotion model that intervenes between traffic 

situation and the driving controller parameters. In order to achieve personalisation, the emotion 

states are correlated with controller parameters, thus linking situations with individual human-

like dynamic control behaviour. 

One personalisation solution is to define individual controller sets and correlate them with 

emotion states. This allows the selection of autonomous driving modes (e.g., “time to target”, 

“eco-friendly”, “chauffeur”, “sport”, “race car” mode etc.) [117], by solving a cost optimisation 

problem for each mode. In this case the optimisation problem is to minimise the cost function 

that is approximated by a linear combination of several basic costs (e.g., steering angle cost, 

velocity change cost, etc.) 

𝑓 =  ∑ 𝑤𝑖𝑓𝑖

𝑖

 

utilizing the weights 𝑤𝑖 ∈  [0, 1] which have to sum to 1 to avoid ambiguity. The optimisation 

is also subject to a set of driving (steering, speed or acceleration) constraints. The cost function 

minimizes over a certain time interval taking the dynamics of the car into account.  

According to [116], when human is in the loop, the above optimization problem is a bilevel 

one, which assumes that humans minimise the cost function at the lower level (the linear 

combination of basic costs) and then at the upper-level problem, they aim in finding the weights 

𝑤𝑖  that minimize the squared distance between the observed and the predicted human actions. 

Despite the few works that early stated the need for it, personalization in the automobile sector 

is still a relatively recent trend due to the fact that the underlying technology only recently 

reached a sufficient level of maturity and availability to support personalization and mainly 

focuses on personalizing the vehicle's advanced driver assistance system (ADAS) [118]. While 

the aim of ADAS systems is to improve driving comfort and safety, the driver’s acceptance of 

ADAS interventions strongly depends on their skill, needs, and preferences. The goal in the 

personalization of such systems is to make their interventions more efficient and to improve the 

driving experience by adapting the systems to the individual preferences of the driver and in 

the field of autonomous driving personalization refers to be comfortable for different drivers, 

hence, the driving style of an autonomous vehicle should be adapted to the individual driver’s 

preferences. 

2.6.2. Personalising the autonomous car behaviour 

The most important component in the task of personalizing a vehicle's ADAS is the driver 

model used to predict the user's behaviour to transform it in the relative ADAS actions. But 

most models are based on a normal average conscious user and their control parameters are 

predefined and cannot be altered based on the different vehicle drivers. In the context of 

autonomous driving personalization, the main task is to create the appropriate controller that 

fits the user based on the observations of human behaviour. This task mainly refers to creating 
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a model that is able to "learn from humans" and try to learn the way a real human would adjust 

the car's controls for various conditions.  

Measuring driving performance and experience (discomfort, perceived safety, driving 

enjoyment) and correlating this with the effects of different driving styles is a key concept in 

various research works. The base of this task is the data collection through the use of sensor 

modules like the work of [119] where ANOVA was used to analyse these effects using a set of 

handset control and sensors, while the users’ trust and acceptance was measured using a 

questionnaire approach for offline evaluation. In addition, a NN approach with multi-layer 

perceptrons (MLPs) can be used in order to recognise characteristics in physiological data with 

relation to discomfort affected by the current driving situation. 

A task that is related with dynamic personalisation and adaption, is the action recognition of 

passengers and driver through computer vision. This is mostly based on human pose 

classification and a very limited set of driven behaviours. For example, [120], links activities 

to interior regions (instrument cluster region, gear region and steering wheel region). [121] 

detects three states: operating the shift gear, eating/smoking (combined together) and talking 

on the phone. The methods used for this task are either based on manually designed features or 

are end-to-end methods based on convolutional neural networks (CNNs). Drive&Act is the first 

large-scale dataset for driver activity recognition which covers both, autonomous and manual 

driving scenarios [122].  

Under this prism, personalizing the behaviour of autonomous vehicles is initially bounded with 

the process of learning the user's actual behaviour, adjusting the system's response to this 

behaviour and translating this into commands that interact with the car's control units. Current 

state-of-the-art systems for autonomous driving are either implemented as a set of individual 

components that are trained to deal with a task each separately. They use a CNN to perform the 

driving pattern recognition and then adjust the system’s response according to the perceived 

situation. They finally translate it into commands to the car control units. The main controller 

units for this purpose are either proportion integration differentiation (PIDs), which are low-

level controllers, or model predictive control (MPC) components [123] [124], which is an 

advanced method of process control that is used to control a process while satisfying a set of 

constraints. The main advantage of MPC is the fact that it allows the current timeslot to be 

optimized, while keeping future timeslots in account. This is achieved by optimizing a finite 

time-horizon, but only implementing the current timeslot and then optimizing again, repeatedly. 

In addition, MPC has the ability to anticipate future events and can take control actions 

accordingly whilst PID controllers do not have this predictive ability. 

On the other hand, deep learning has been used in systems that exploit end-to-end techniques 

to train one single model that imitates the behaviour of a human demonstrator [125]. The 

DAVE-2 System [125] combines input from cameras and the steering wheel in a CNN that 

predicts the correct steering angle that keeps the car on the road. However, such end-to-end 

solutions still do not introduce any personalisation aspects. In this direction, Reinforcement 

Learning is one of these state-of-the-art approaches that can be employed for continuous 

learning and adaptation of driving to the user state, thus providing an end-to-end solution for 

personalisation of autonomous driving. RL aims at training a model in order to maximize a 

reward function that is evaluated based on the feedback the model gets after each decision is 

performed in the agent’s environment. Reinforcement learning, imitation learning and inverse 

reinforcement learning are common approaches for tailoring system behaviour and 

performance to better fit the user's profile. 

Current state-of-the-art on this field explores different types of approaches for solving smaller 

problems (i.e., motion planner) that can be combined to compose a unified autonomous driving 
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controller. In such cases for example, reinforcement learning is used, in order to learn from 

human drivers based on the on-board sensing information and realize human-like longitudinal 

speed control through the learning from demonstration paradigm. Based on this knowledge, the 

target speed of the drivers is learned by the personalized learning system which translates this 

into low-level control commands by a proportion integration differentiation (PID) controller. 

Another variant of this approach is inverse reinforcement learning, which assumes that a human 

demonstrator follows an optimal policy with respect to an unknown reward function and once 

the reward function is recovered, reinforcement learning is also used to find the appropriate 

policy that imitates the expert. 

For example, in the autonomous driving scenario, the goal is to maximizing the driving agent 

reward based on the car’s state measures (i.e., speed, position on the road lane, distance from 

sidewalk, distance from other cars etc.). One of the latest achievements on this direction was 

proposed by [126] who designed a deep reinforcement learning algorithm and used the deep 

deterministic policy gradients algorithm for training an asynchronous advantage actor-critic 

(A3C) [127] RL agent and define the reward as the distance travelled by the vehicle without 

the interference of the human driver.  

In these terms, RL algorithms are used for solving a Markov Decision Problem which consists 

of (a) a set of states 𝑆, (b) a set of actions𝐴, (c) a transaction probability function 𝑝: 𝑆 × 𝐴 →
𝑃(𝑆), which assigns a probability distribution 𝑝(∙ |𝑠, 𝑎) to every pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴, 

representing the probability of entering a state from state 𝑠 using action 𝑎, (d) a reward function 

𝑅: 𝑆 × 𝑆 × 𝐴 →  𝑅, that describes the reward 𝑅(𝑠𝑡+1, 𝑠𝑡 , 𝑎𝑡), associated with entering state 𝑠𝑡+1 

from state 𝑠𝑡 using action 𝑎𝑡 and (e) a future discount factor representing how much we care 

about future rewards. Based on this approach, a set of sensors like RGBA cameras, LIDAR etc. 

is used in order to observe the set of states given to the algorithm as an input each observation 

step and the set of actions is composed of a 2-d space of pairs of steering angle and a speed 

setpoint in km/h. As pointed by the state-of-the-art, the reward function is defined as forward 

speed and an episode is terminated upon an infraction of traffic rules – thus the value of a given 

state 𝑉(𝑠𝑡) corresponds to the average distance travelled before an infraction. 

In order to personalize the agent’s decisions and make them adaptive to various conditions, 

including the human driver’s state, it is necessary to develop a mechanism that dynamically 

adjusts the vehicle behaviour to the actual conditions. For this purpose, we decide to separate 

the vehicle controlling mechanism, which traditionally is a PID controller or an MPC controller 

as depicted in Figure 14, from the personalisation mechanism. As depicted in the figure, the 

MPC controller is controlling the vehicle behaviour based on the current and desired driving 

properties and a set of configuration parameters that affect how the vehicle reaches the desired 

properties. The result of this configured controlling is a less or more steep adjustment of the 

vehicle acceleration or steering, which can add to the physiological signals of the driver. For 

example, a sudden braking, continuous changes in the steering angle, or side accelerations may 

add to the driver stress, so the personalisation agent has to quickly adjust the MPC parameters 

in order to reduce stress. As shown in the Figure, a multi-series RNN model, considers the 

various input signals (time-series) from driver and car sensors and decides on the MPC 

parameters, which in turn affect the vehicle’s behaviour and consequently the car and driver 

state. The point of interest in this approach is the quantification of the error in the prediction of 

the best MPC parameters at every moment, based on the resulting behaviour of the vehicle. In 

order to handle this issue, research and experiments are currently performed in a simulation 

environment, using an RL model with a reward function that is subject to the effect of MPC 

decisions on the driver state. 



TEACHING D4.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 39 - December, 2020 

 

Figure 14: Pipeline for controlling MPC functionality based on the driving profile personalization 

Another approach that can be exploited for adaptive personalisation in the autonomous driving 

task is Lifelong and Continual Learning (Section 2.3). A technique that has recently been used 

in chatbots to learn them to consequently adapt to new tasks [128] can be beneficial for 

personalised autonomous driving, where the learned driving preferences for a certain driver for 

a set of tasks are continuously challenged with new tasks, new driving conditions and situations. 

In the same time old knowledge must not be forgotten, thus the catastrophic forgetting aspect 

has also to be considered [129]. An indicative way of developing and validating successful 

human-machine symbiotic systems that promote user trust and protect user safety has lately 

been proposed by [130], who try to identify the key components of a validation, verification 

and certification process for Highly Automated Vehicles (HAVs). Also, in [131] [132] authors 

presented an approach for the verification and validation of robot assistants in the context of 

human–robot interactions, in terms of safety and trustworthiness, allowing different verification 

and validation techniques to corroborate one another. 

2.7. Software Frameworks for ML 

ML and DL are increasingly being used in industrial applications and, undoubtedly, one reason 

for their success is the availability of libraries and open-source tools that ease the design, 

development, and production of the learning models. A discussion on this kind of software 

frameworks from the perspective of the TEACHING computing platform is reported in D2.1 

(Section 5.3). Among other alternatives (e.g., MXNet4 and Caffe5), the two most popular 

choices are PyTorch6 and TensorFlow7. As discussed in Section 5.3.2 of D1.1 (to which the 

reader is referred for further discussion), the TEACHING choice fell on TensorFlow, primarily 

for the availability of TensorFlow Lite8, a set of tools that enable ML functionalities at the edge. 

TensorFlow Lite mainly consists of two components: an interpreter that can run optimized code 

for learning models on a huge variety of different hardware supports, including mobile devices 

and microcontrollers, and a converter, which converts TensorFlow models into a suitable form 

to be used by the interpreter. In addition, the choice of TensorFlow/Lite also naturally enables 

 

4 https://mxnet.apache.org 

5 https://caffe.berkeleyvision.org 

6 https://pytorch.org 

7 https://www.tensorflow.org 

8 https://www.tensorflow.org/lite 

https://mxnet.apache.org/
https://caffe.berkeleyvision.org/
https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/lite
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the use of high-level Keras9 APIs, thereby including the sub-classing, functional and sequential 

APIs, which - for example - ease the process of composing the AIaaS learning-related modules. 

TensorFlow and TensorFlow Lite are ideal frameworks for the implementation of the RNN 

approaches and techniques described in Section 2.1. In particular, TensorFlow’s good support 

for sparse matrix operations is a useful feature for the implementation of efficient RC models. 

Moreover, the availability of the officially supported TensorFlow Federated framework makes 

it easy to implement ML models in the context of federated learning. Regarding deployment, 

the officially supported TensorFlow Lite is suited for the inference of ML models onboard low-

power edge devices. In fact, TensorFlow Lite supports the conversion of ML models to more 

memory-efficient formats and also eases optimization techniques such as the quantization of 

the network weights to reduce the size of the model and to improve its inference speed. It is 

then possible to envisage configurations in which the RNN running on the edge devices are 

endowed with RC-based adaptation/training capabilities, which (as explained in Section 2.1) 

do not require the extra expense of gradients propagation. 

Moreover, the computation of dependability measures (reported in Section 2.4) is amenable to 

implementations in both TensorFlow and TensorFlow Lite. 

In relation to the human-feedback personalization techniques described in Section 2.6, this 

scenario illustrates a real-world application where new training data become available after the 

NN has already been trained. In these types of applications, CL networks and RL techniques 

have to be employed and TensorFlow (for training purposes) and TensorFlow Lite (for on-

board prediction integration) are widely used platforms for building and deploying stable and 

high throughput ML-powered applications like these kinds of tasks. In this direction, 

TensorFlow and TensorFlow Lite will also be used for implementation along the different LMs 

described in Section 4.2.4 for the tasks of autonomous vehicle behaviour personalization. 

2.8. Enabling TEACHING Use Cases 

Both use cases considered for the project involve data in the form of time-series. In the 

automotive use case (D5.1, Section 3), the data will mainly come from biomedical sensors and 

vehicle sensors for supervised learning tasks (D5.1, Section 3.1). In the avionics use case (D5.1, 

Section 2), the AI will receive streams of data regarding the monitoring of hardware (and 

possibly software components) to perform anomaly detection and produce recommendations 

(D5.1, Section 2.7). Details on the TEACHING selected pool of sensors can be found in Section 

5.2 of D1.1. The ML models discussed in the state-of-the-art Section 2.1 are thus ideal for 

processing these streams of time-series, in both cases. 

Moreover, the use cases are perfect examples of applications where federation techniques can 

provide large advantages in terms of predictive performance by exploiting the knowledge 

available in the peers (i.e., other vehicles or aircrafts). The federated learning techniques from 

Section 2.2 will allow the AI systems to share knowledge while preserving privacy constraints. 

Also, in both use cases, it can happen that the distribution of the data may drift over time. For 

example, the biological signals of a subject in a vehicle may exhibit periodic drifts (such as the 

skin conductivity in different seasons of the year) or permanent drifts (such as the stress level 

of a subject getting accustomed to a new road). This is why it is important to consider Continual 

Learning techniques from Section 2.3 to make sure to correctly adapt to these drifts. 

 

9 https://keras.io 

https://keras.io/
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In the automotive use case, the dependability concept shall be applied to reach an adequate 

safety level. Lack of safety could lead to catastrophic consequences for the human health. Data 

coming from external vehicle sensors shall be correctly interpreted from the appropriate LM to 

avoid errors that could potentially lead to a physical harm of the involved people. In this context 

the role of the metrics that calculate dependability becomes crucial because it permits to find 

LMs that do not reach a sufficient degree of dependability and so might not be considered safe. 
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3. Requirement Analysis  

This section presents an analysis of the TEACHING AIaaS requirements, specifically detailing 

those originating as part of the technological view in WP4, or with an impact on it. Note that 

the TEACHING consortium developed a centralized repository that collects all the 

requirements of the project, reported in the Project requirements document release 1.0 in the 

form of a jointly edited, living document. To identify each requirement, we refer to the IDs 

assigned in the project’s requirements document. For each requirement, together with a brief 

textual description, we report its priority, the impact on WPs, the reference use case domain 

(when relevant), and possible links to other project’s requirements. 

We start in Section 3.1 illustrating the architectural requirements. We then continue with a 

description of functional and non-functional requirements, respectively in Section 3.2 and 

Section 3.3. Safety and security requirements are described in Section 3.4. Finally, in Sections 

3.5 and 3.6 we conclude with performance requirements and structural requirements. 

3.1. Architectural Requirements 

3.1.1. Data transfer for AIaaS federation 

The edge system must be able to send and receive sets of ML model parameters to/from the 

cloud over the network. This communication channel can be subject to bandwidth and 

connectivity limitations. 

ID: 72 

Priority: high 

Impact on WPs: WP2, WP4 

3.1.2. Communication of the AIaaS modules with the vehicle 

The AIaaS modules on the edge must be able to control the parameters exposed by vehicle. For 

example, they should be able to switch the configuration of the vehicle among different driving 

styles. 

ID: 75 

Priority: high 

Impact on WPs: WP2, WP3, WP4 

Domain: automotive 

3.1.3. Communication of the vehicle with the AIaaS modules 

The AIaaS modules on the edge must be able to receive as input the data from the sensors and 

the state of the vehicle. 

ID: 76 

Priority: high 

Impact on WPs: WP2, WP3, WP4 

Domain: automotive 

Link to other requirements: 73, 74, 85 

https://unipiit.sharepoint.com/:x:/r/sites/TEACHING/Shared%20Documents/Requirements_project/Teaching_requirements_Release1.0_20201222.xlsx?d=w4dd4dacd656b46eab1087f5ed643d678&csf=1&web=1&e=e3AJew
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3.1.4. Communication of AIaaS suggested actions 

The AIaaS system must be able to display suggested actions to the human through a suitable 

user interface. 

ID: 77 

Priority: medium 

Domain: avionics 

Impact on WPs: WP4, WP5 

3.1.5. Intra-edge AIaaS communication 

Within the same edge device, different modules of the AIaaS system need to exchange data and 

predictions. For example, the learning modules could be configured so that the output of model 

A is later used as input for model B.  

ID: 78 

Priority: high 

Impact on WPs: WP2, WP4 

3.1.6. Inter-edge AIaaS communication 

Across different edge devices, different modules of the AIaaS system need to exchange data 

and predictions in a similar way to the intra-edge AIaaS communication. For example, the 

learning modules could be configured so that the output of model A on a given device is used 

as input for model B on a different device. 

ID: 79 

Priority: medium 

Impact on WPs: WP2, WP4 

3.1.7. Access to vehicle sensors' data 

All the sensors on-board the vehicle used to acquire the biophysical parameter of the user, the 

automotive data and other environmental information must be readable through a standard 

M2M protocol from the communication entities of the infrastructure. 

ID: 85 

Priority: high 

Domain: automotive 

Impact on WPs: WP2, WP4, WP5 
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3.1.8. Data brokering within the AIaaS platform 

A mechanism of data brokering should be designed to mediate the access of the functional 

modules of the AIaaS to the data generated by the wearable, automotive and environmental 

sensors, or avionics traces.  

ID: 98 

Priority: high 

Impact on WPs: WP2, WP4 

3.2. Functional Requirements 

3.2.1. Detect changes in user state 

Use heart rate (electrocardiogram), nerve and muscles signals (electromyogram), respiration, 

galvanic skin response, gaze direction and driver’s and/or passengers’ emotional state, which 

are derived using either inwards monitoring cameras or physiological sensors, smart wearable 

devices etc. to recognize changes in stress, emotional and drowsiness levels.  

ID: 80 

Priority: medium  

Domain: automotive 

Impact on WPs: WP4, WP5 

3.2.2. Detect changes in car state or context 

Use sensors and cameras either integrated to the car (accelerometers, gyroscopes, luminosity 

sensors, LIDAR, camera, IR beam and sonar) or attached by the driver to detect car's state and 

context (e.g., road and weather conditions, obstacles) to feed them in the human-centric 

personalized autonomous driving system. 

ID: 81 

Priority: medium  

Domain: automotive 

Impact on WPs: WP4, WP5 

3.2.3. Perform ADAS adaptation for model fine tuning 

Depending on the overall driving style of the passenger, his state, the car's context or the 

currently selected driving style of the passenger for the specific scenario, we change the model 

parameters in order to get a slightly different distribution at the variation of the model's 

parameters. 

ID: 82 

Priority: medium  

Domain: automotive 

Impact on WPs: WP4, WP5 
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3.3. Non-functional requirements 

3.3.1. Annotated data for AIaaS (human state recognition) 

It is needed to collect a dataset of physiological signals from human subjects in a vehicle or 

simulator in order to construct ML models capable of distinguishing between different 

physiological states such as relaxation, drowsiness, and stress in real-world conditions.  

ID: 73 

Priority: high 

Domain: automotive 

Impact on WPs: WP4, WP5 

3.3.2. Annotated data for AIaaS (driving preference) 

It is needed to collect a dataset of the different driving preferences associated to the different 

physiological states such as relaxation, drowsiness, and stress. The data is required in order to 

construct ML models capable of switching or suggesting different driving styles according to 

the physiological state of the human driver. 

ID: 74 

Priority: high 

Domain: automotive 

Impact on WPs: WP4, WP5 

3.3.3. Compatibility between SW and HW components 

The software implementation of AIaaS at the edge must run on the available hardware. 

ID: 92 

Priority: high 

Impact on WPs: WP2, WP4, 

3.3.4. Defining learning functionalities of the AIaaS 

A list of functionalities and corresponding API should be defined for the modules of the AIaaS 

platforms such as RNN, Classifier, etc.  

ID: 94 

Priority: Critical 

Impact on WPs: WP2, WP4 

3.3.5. Defining the possible pattern for access the Edge storage 

A pattern defines the characteristics of the data flow between the source and destination, such 

as: streaming/storing each value as it is available, sending batches of an assigned size, 

reading/writing data via queues. The patterns depend on AIaaS system implementation as well 

as from the application model we will adopt for the design of AIaaS. 
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ID: 95 

Priority: Medium 

Impact on WPs: WP2, WP4 

3.3.6. Common interface for functional modules of AIaaS 

Functional modules of the AIaaS should expose a common interface that allows orchestration 

operations such as initialization, setup, connect, etc.. 

 

ID: 96 

Priority: High 

Impact on WPs: WP2, WP4, 

3.3.7. AIaaS application definition 

An AIaaS application should be specified as a workflow graph of functional modules, 

including: its parameters, external communication channels, etc. 

ID: 97 

Priority: High 

Impact on WPs: WP2, WP4 

3.3.8. Common data format for the data brokering 

The data brokering should have a defined format. Functional components of the AIaaS must 

either use the same format or implement an adapter. 

ID: 99 

Priority: High 

Impact on WPs: WP2, WP4 

3.3.9. Common meta-data format for the data brokering 

 The data brokering should have a defined format for the meta-data associated to each type of 

data sensor. 

ID: 100 

Priority: High 

Impact on WPs: WP2, WP4 

3.3.10. Annotated data for AIaaS (avionics traces) 

Need to collect software/hardware traces from the aircraft sensors to train the AI modules 

ID: 106 

Priority: high 

Domain: avionics 
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Impact on WPs: WP2, WP4, WP5 

3.4. Safety and security requirements 

3.4.1. Ensure safe mode transitions and awareness 

Ensure that mode transitions are performed correctly and controlled by the vehicle operator 

affected if necessary. The vehicle operator affected has also to be aware of the current mode 

and their responsibility deriving from it. For example, actuating an automated mode is permitted 

only when inside the Operational Design Domain (ODD), and it will be deactivated prior to 

leaving the ODD or as a result of the vehicle operator taking control again. 

ID: 32 

Priority: high 

Impact on WPs: WP1, WP2, WP3, WP4, WP5 

3.4.2. React to insufficient nominal performance and other failures via degradation 

Due to possibly unavailable nominal performance capabilities and other failures (e.g., based on 

hardware faults), CPS has to degrade within a well-defined amount of time. 

ID: 33 

Priority: high 

Impact on WPs: WP1, WP2, WP3, WP4 

3.4.3. Reduce system performance in the presence of failure for the fail-degraded mode 

The reaction in case of failures during fail-degraded mode has to be defined. 

ID: 34 

Priority: high 

Impact on WPs: WP1, WP2, WP3, WP4 

3.4.4. Perform ODD functional adaption within reduced system constraints 

CPS operation with ODD functional adaption is actuated as nominal capabilities with new 

limits. Multiple functional adaptions are possible. The limitations have to be defined such that 

the functional adaption can be stated as safe. Therefore, it may be necessary to avoid a 

permanent operation. A well-defined timeframe for an additional reaction is required. 

ID: 35 

Priority: medium 

Impact on WPs: WP1, WP2, WP3, WP4, WP5 

3.4.5. Attributes for dependability of Neural Networks  

Many of AI systems are based on Neural Networks (NN). Attributes to evaluate the 

dependability of NN are: Robustness, Interpretability, Completeness and Correctness (RICC). 

ID: 83 
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Priority: high 

Impact on WPs: WP4 

3.4.6. Metrics for attribute dependability 

Definition of metrics to evaluate quantitatively the attributes RICC of dependability. Each 

metric reflects one or more attributes and their combination allows to have an evaluation of 

each attribute (Robustness, Interpretability, Completness and Correctness attributes). 

ID: 84 

Priority: high 

Impact on WPs: WP4 

3.4.7. Secure access from application to the adaptive system of the vehicle 

The autonomous driving system should expose an interface that allows the application of the 

AIaaS to tune the parameter of the adaptive system of the vehicle in a secure way. 

ID: 102 

Priority: Critical 

Domain: automotive 

Impact on WPs: WP1, WP2, WP3, WP4, WP5 

3.5. Performance requirements 

3.5.1. Figures on data production rate and QoS requirements 

Defining figures to quantify the amount of data information generated per unit of time by all 

the sensors, in the controlled environment. This is a fundamental requirement to properly design 

and to tune the communication and computing platform of the CPSoS. 

ID: 88 

Priority: high 

Impact on WPs: WP2, WP4, WP5 

3.5.2. Figures on data production rate and QoS requirements 

Defining figures to quantify computing performances expected by AIaaS based applications, it 

is of paramount importance to properly design the computing platform and to tune the 

orchestration process. 

ID: 89 

Priority: high 

Impact on WPs: WP2, WP4, WP5 
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3.6. Structural requirements 

3.6.1. Hardware requirement of the functional modules of the AIaaS 

AIaaS’s functional modules should have associated their specific hardware requirements such 

as RAM, computational load, need of local storage, to assure their compatibility with the 

underlying hardware platform.  

ID: 101 

Priority: high 

Impact on WPs: WP2, WP4 

3.6.2. Non-volatile storage unit for the AIaaS platform 

A non-volatile storage unit has to implemented to allow access to the AIaaS platform, for the 

storing of data and meta-data. 

ID: 103 

Priority: high 

Impact on WPs: WP1, WP2, WP4, WP5 

3.6.3. AIaaS subsytem to manage internal module violations 

A non-volatile storage unit has to implemented to allow access to the AIaaS platform, for the 

storing of data and meta-data. The AIaaS platform requires a subsystem to collect and react to 

the violations of the reliability metrics raised by the functional modules of the platform 

ID: 104 

Priority: Medium 

Impact on WPs: WP2, WP3, WP4 
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4. Design 

This section describes the way the TEACHING platform supports AIaaS applications. In the 

first part (Section 4.1) we first introduce the overall approach to AI applications, which sees 

them as the result of composing commonly used, well specified basic AI building blocks. The 

same section then goes on to present the software architecture of the platform, describing the 

different modules and components it is comprised of.  

The second part of this section (Section 4.2) focuses on the TEACHING application model, 

first by explaining more thoroughly the overall approach (Section 4.2.1), then by providing the 

definition and features of the building blocks that compose a TEACHING application (Section 

4.2.2).  

Then, Section 4.2.3 discusses the relationship between the AIaaS support, its hosted application 

and other parts of the TEACHING platform, focusing on communication mechanisms, local 

storage and data transfer.  

Finally, subsection 4.2.4 lists the specific classes of Learning Modules that will contribute to 

the support of TEACHING use cases, also linking them to the research topics and learning 

techniques previously covered in the state-of-the-art (Section 2). 

4.1. General Architecture 

This section describes the overall architecture that supports AI application in the context of the 

AIaaS platform. The architecture is designed to be general enough to provide support for both 

the automotive and avionic use cases. The core idea is that such architecture should allow the 

application developer to compose a fully working application by means of the following set of 

abstract functionalities: 

• Ready-made learning functional units, called Learning Modules (LM), that provide 

predefined learning functions. The LMs, akin to AI-enabling Lego blocks for the edge, 

are developed on top of an AI/learning framework suited to run on the edge devices 

(e.g., TensorFlow lite10); 

• Ability of chaining and composition of LMs and automatic local routing of necessary 

data for training and prediction purposes; 

• Access to a set of existing sensors that provide data stream as source for the LMs; 

• Networking devices that allow external communication, including accessing Cloud 

based and other edge-based devices, e.g., RSUs for the automotive use case, or satellite 

for the avionic use case.  

Based on this first description, in the following Section 4.1.1 we present the overall software 

architecture of the AIaaS platform, define the roles of its composing modules and their 

relationship with each other. 

 

 

 

10 https://www.tensorflow.org/lite 
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4.1.1. Architecture Components Description 

 

 

Figure 15 Software Architecture of the AIaaS Platform on the Edge 

The functional components of the AIaaS system and their relationships are depicted in Figure 

15. The core components of the systems are the ones devoted to the execution of AI 

applications, and the overall architecture is designed taking into account the requirements listed 

in Section 3. The application is composed by a set of LMs that operate together toward a specific 

end; for example, in the context of the TEACHING use cases they generate a feedback for the 

controller of a vehicle or for the pilot of an aircraft.  

The application deployment inside the AIaaS platform, according to a model that is more fully 

described in Section 4.2, revolves around four elements: the Application description, the 

Application Translator, the Application Runtime and the Application Logic. The Application 

Description is a document containing the definition of the application in a well-defined format, 

and it is described more in detail in Section 4.2.2.  

The Application Translator software component plays two roles: first, it generates and 

configures the ready-to-be-executed instances of the LMs that are part of the application, and, 

second, it provides the application runtime component with the Application Logic elements as 

derived from the Application Description.  

The Application Runtime component manages the main execution workflow of an application. 

Its core functions include: the instantiation of the underlying AI framework that hosts the 

learning modules; instantiation and execution of the LMs of the application; configuration of 

the AI data bus to correctly route the data stream to the relevant LMs. The application runtime 

also manages the Application Logic, triggering and providing data to its function. 

Finally, the Application Logic is a per-application software module. It embodies those parts of 

the application which are in charge of handling all special cases and actions that depart from 

the main workflow of the Application Runtime (deployment, data collection, and data analysis). 

For instance, custom snippets of code from the Application Description to be triggered by some 
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specific LMs behaviour, checking conditions and enacting specific application reactions, are 

all collected in this software module.  

A LM is a function module that implements a single machine-learning (ML) task. The LM 

scope might include both the training of an ML model and the execution of such a model against 

incoming data, plus other functions (e.g., data processing and mining) that will be useful or 

necessary for the development of the reference applications. LMs are implemented via the AI 

framework, but they may be defined to address more complex tasks than those already provided 

by the AI framework. The structure of LMs and their interplay with the application model are 

described in Section 4.2. The LM functions considered within the project are reported in Section 

4.2.4. 

The collection of the LM implementations that are available to the Application Translator for 

deploying applications is stored within the local LM library. This component acts as a local 

repository providing for each LM at least one implementation suitable to execute within the AI 

framework, together with metadata needed to guide and perform the LM deployment. 

Data that feeds the LMs is produced by either sensors (typically time-series of observations for 

certain physical measures) or outputs produced by other software components, potentially 

paired with supervision or controls data.  

The sensors are accessed through a common, dedicated Sensors API, but not directly, in order 

to provide a place for adapter components that insulate the application support from the 

specifics of different kind of sensors. If foreseen, intra vehicle communication (e.g., interfacing 

to mobile on-board devices to exploit their sensing capabilities) may also be placed within the 

Sensors API component.  

The data is then collected by the Data Brokering component, which takes the role of main 

distributor of data inside the AIaaS platform. As a routing and interfacing component, the Data 

Brokering will provide an interface to select the data of interest from the various components, 

such as publish/subscribe interfaces and filtering capabilities alike those of modern stream 

processing system (e.g., Apache Kafka11). It will also provide the option to implement to some 

degree custom management of communication / interactions, as it may be required either by the 

application or by the handling of extravehicular links/protocols (possibly addressing link 

reliability and latency characteristics, or synchronization constraints).  

The AI Data Bus is in charge of dispatching the data to the correct LM component. It will 

generally exploit the DB component as well as the APIs of other components in order to let the 

data flow. The specification of what data goes in which LM and when is provided by the 

Application Logic.  

The Local Storage API provides the interfaces to a non-volatile, local storage that allows 

applications to store different types of data, including configurations, temporary data, cached 

data and results. This assures that whenever the AIaaS platform needs to be restarted, all the 

work can continue from the last checkpoint rather than restart from scratch. 

Apart from the sensors, the system communicates with two other kinds of external entities. The 

feedback from the application to the CPS system goes through the DMU (Decision Making 

Units, e.g., controller interfaces), that interfaces to system in-vehicle actuators or the pilot. As 

the whole CPS has critical dependability constraints, the DMU component will perform 

 

11 https://kafka.apache.org/ 

https://kafka.apache.org/
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additional checks and impose constraints on any action that the application may want to 

perform. The External communication interface component is used to mediate the 

communication with other entities outside the vehicle, and in the case of the automotive use 

cases other entities such as RSUs, and other vehicles. Practically, this component can be 

internally divided into multiple components each dealing with the different means of 

communication necessary. 

4.2. Application model  

In this section we describe the overall approach to modelling and describing AIaaS applications. 

We provide an in-depth description of the specific design choices made and under evaluation 

for the application model, the resulting research and technological issues, as well as the 

interplay and the technological constraints that affect the AIaaS architecture, WP4 activities 

and other related project activities and components.  

As a first step, we explain and motivate the overall approach to modelling AI applications. 

4.2.1. Approach to AIaaS Applications 

The application model in TEACHING is a composition of abstract basic AI units (called 

Learning Modules) which provide predefined useful AI functions to the App developer.  

The Application Description document that we described in Section 4.1.1 contains all the 

relevant information about the application. The overall AIaaS support is capable of 

transforming an application described there, expressed as a composition of “building blocks” 

plus suitable metadata, into an actual executable artefact plus the necessary workflow of steps 

and checks required to manage it. 

Application management tasks include both the deployment of the executable(s) and any 

runtime action needed either by the framework (e.g. react to system events like power down, 

application termination or hardware failures) or by the application itself (e.g. react to 

application status changes, to reliability metrics changes, perform actions on the CPS system 

based on application results). 

The “building blocks” of applications, the LMs, are AI modules whose semantics and interfaces 

are agreed upon and defined by TEACHING. Section 4.2.4 of this deliverable summarizes the 

current list of LMs identified so far. The rationale backing the definition of a set of LM is to 

develop a high-level description of generic AI apps that is fully operational, the following key 

points standing:  

• Typical AI applications are easily composed with commonly used functional blocks, 

which are separately verified and debugged, and whose behaviour can still be 

configured by providing them (hyper)parameters;  

• The implementation details of each LM over possibly different instances of the 

execution framework can be safely hidden to the application developer; 

• The LM abstraction allows optimizing the execution exploiting the available hardware; 

• The LM abstraction allows most management activities to be performed by the AIaaS 

framework in a homogeneous way, while conveying specific events to custom 

application code whenever needed; 

• The list of available LMs can be extended and made fully general, but the approach 

allows a quick bootstrap within the project by focusing on those learning tasks that the 

TEACHING use cases require. 
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The application model definition can be seen as an Application Specific Language (ASL) for 

edge AI, providing enhanced high-level features to easily express a certain class of problems, 

without sacrificing expressive power, for a specific class of applications.  

The reference class of applications comprises complex AI and learning applications for CPS, 

where related previous work is plenty both from the theoretical standpoint as well as from the 

technological one. As a consequence, the definition of the application model is not a new ASL 

designed in a vacuum, and developed from scratch, it is instead a specialization and extension 

of an existing formalism for AI applications.  

The TEACHING approach to defining the application model focuses on easing the addition of 

metadata about the application structure and its execution features, in order to allow easier 

automated deployment and management of applications. The specification of the application 

structure and the snippets of management code are designed to simplify the application source 

code, removing most of the burden from low-level management code. 

4.2.2. Elements of the application description 

The Application Description artefact must contain all information needed by the AIaaS 

platform in order to select resources, deploy the app, manage its execution (implementing 

reactions to both ordinary events and sporadic ones), perform an orderly app termination and 

clean-up if needed.   

We already discussed the overall approach of exploiting Learning Modules (LMs) in 

composing applications. LMs are ready-made learning functional units that provide predefined 

learning functions of a small set of initialization parameters and one or more input/output data 

streams (hosting actual data, weight-sets, or models). The LMs, akin to AI-enabling Lego 

blocks for the edge, are developed on top of an AI/learning framework suited to the edge devices 

(e.g. TensorFlow lite).  

Any Application Description references and instantiates one or more of such LMs, providing 

them (hyper) parameters, possibly initial internal state, and specifying the type of data that the 

LM needs to compute. Additionally, the source of each data stream(s) and the destination of the 

result stream(s), are specified as discussed later on in this section about the Application Graph.  

• It is a requirement that at least some of the modules are abstract enough to be configured 

in two ways: to apply a preconfigured knowledge model, or to learn/refine the same 

kind of model. The instantiation of the LM within the application has to specify (at the 

latest at deployment time) the way that module is used.  

• Specific LMs may have more than one implementation, differing in the execution 

constraints and bound in terms of HW and SW resources (e.g. specific devices like 

GPUs, available SW libraries or features of the supporting framework, amount of 

memory, performance or of power efficiency). The Application may specify constraints 

and features to allow the Application Translator to pick up the most appropriate LM 

implementation from the Learning Module Library 

The Application Graph is the graph collecting the LMs that compose an application. 

Irrespectively of the actual syntax used to describe the LM data connections (e.g. 1-to-1 

channels, pub/sub interfaces), we see the directed (multi)graph of the application as an abstract 

data structure whose nodes are LMs and whose edges are data exchanges of any type. The 

Application Graph contains information about 

• Chaining/composition of LMs, the description of the data they exchange, including 

information needed for automatic local routing. Note that different types of data 



TEACHING D4.1                                                                                                      ICT-01-2019/№ 871385 

TEACHING - 55 - December, 2020 

exchange semantics may be adopted, with (buffered) stream communication being the 

obvious one and asynchronous exception/like message exchanges being another 

important use case.   

• Existing sensors as a source of data streams to be collected 

• Destinations of data streams like specific DMUs or Application Logic methods 

• Local storage as destination, source or cache of data that needs to be communicated 

• Information allowing the data ingestion/brokering support to implement the 

communication tasks that provide access to external networks. As a significant special 

case, networking devices that allow inter- and intra-vehicle communication can be 

designed as the source and destination of data (providing the application with a flexible 

access to Cloud-based and other edge-based devices). 

The Application Logic is a part of the Application Description that collects code stubs and 

methods designed by the app developer to performing specific tasks supporting the overall 

learning process.  

While most of the application code is actually produced from the Application Translator 

exploiting the information from the LMs and the Application Graph, and managed in a safe and 

standard way by the Application Runtime, for the sake of expressiveness we cannot rule out 

that applications need to perform specific data or event-triggered tasks that are not or not 

efficiently implemented by LMs.   

As a rule of thumb, in well-defined programming frameworks the amount of low-level code 

that can introduce unforeseen dependencies should be as little as possible. Fully strict models 

are however detrimental to programming flexibility, especially during the process of 

developing the runtime support for a new or improved programming paradigm, when 

experimenting with different solutions is even more of value. Hence, custom code stubs will be 

allowed to deal with special use cases, e.g. any custom processing needed by sensor-produced 

data or by commands to be addressed to DMU actuators. Last but not least, reacting to 

asynchronous events may be simpler and more efficient to do within ordinary sequential code 

than with an LM running inside the AI framework. This is true especially if the action to be 

performed implies changing the state of the AI framework, by removing, replacing, adding LMs 

to the application, or by tuning their hyperparameters, which are all relevant actions for the use 

cases in the TEACHING project. 

4.2.3. Relationship with other TEACHING subsystems 

This section provides more detail about two issues related to the data flow within the AIaaS 

platform, namely: 

• the type of communication required by distinct, interacting parts of the application 

• the use of local storage that we foresee in TEACHING applications. 

Concerning the first topic, the main interaction between LMs is natively performed within the 

AI framework. We choose to provide a communication support (the Data Ingestion/Brokering 

Support) outside the AI framework as we identified via the requirement analysis several 

potential data flows with different characteristics within the use cases. The DBS is likely to 

implement a pub/sub model to allow subsets of the same data to be routed to different LMs and 

platform modules, possibly separately filtered as each one of them requires. The routing and 

filtering data streams is a common need in these settings, and it is more efficient to implement 

it as feature of the mediator component. The approach is flexible and also efficient for volatile 

data with the expected bandwidth. However, in addition to regular communications that are 

well modelled by queue systems, we also identified the need to implement out-of-band, 
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extemporal, exception-like information exchanges which will need to reach at least the LMs, 

the Application Logic and the control API of the AI framework.  

 

Concerning the exploitation of Local Storage API, the need is clear from the requirements for 

a stable data storage beyond the volatile one provided by the data brokering component. A 

stable storage will deal with both sensor data streams and model data (e.g., LM model weights 

and parameters, which in federated/continuous learning can also be seen as a stream). The Local 

Storage API needs to provide several features:  

• Access to non-volatile storage, as it needs to survive a reboot 

• Support data and associated metadata (e.g., how old is the data in storage, what LM 

used/generated the data items) 

• As the size of stored data will be constrained, a small solid-state device is fit for the two 

following purposes 

o Perform a backup/dump/reload of LM models, in order to allow a continuous 

learning process to survive system restart (model data size is quite small) 

o Stack up input data in a local cache in order to perform batch computation (data 

size is comparable to the system board RAM memory size for this use case) 

 

Information stored or sent to external devices (including the Cloud) can generically be either a 

learned model, raw sensor data or anything in between. The fact mandates a pause and a second 

look at the potential privacy and system abuse issues. 

As we worked to analyze the constraints on moving data from local storage to non-local, 

external storage, we realized that the architecture design phase must stress a distinction between 

privacy-oriented design and security. Privacy-oriented design is most obviously within the 

scope of the project. Security beyond the state of the art, on the other hand, that is designing a 

system which cannot be abused by application developers, is not in the project scope.  

From an architectural standpoint we may be tempted to avoid those functions that transfer data 

buffers to remote storage, or to adopt a sophisticated authorization mechanism for those 

transfers. However, we must observe that: 

• the distinction is not quite trivial to implement, and it makes much more complex the 

component APIs. 

• Project goals require us to be able to send a model (e.g., the output of some LM) to a 

different system. Any restriction on sending data is immaterial if we can define an LM 

that sidesteps the constraint by encoding the raw data inside its model. 

• Our AIaaS platform works in a very secure and industrially verified environment, where 

all components checked right away since their design, and the risks of allowing an 

intrusion are much higher than data theft.  

Security and privacy in the presence of malicious developers are thus protected by application 

inspection and by LM code design: the whole process of developing edge AI apps already is, 

and needs to be involved in preserving those aspects. 
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4.2.4. Classes of Learning Modules 

Here we present the rationale, purpose and main features of specific classes of Learning 

Modules that either are relevant for the research to be performed, or whose need has been 

identified by the partners in order to support TEACHING use cases. We identify the main 

classes of LMs the project will design and implement, as well as their relationship with the 

research aspects previously described in Section 2 about the state-of-the-art analysis. 

For each class of LM we describe here, we foresee one or more concrete implementations to be 

developed by the project. Besides providing a specified machine learning function, the different 

implementations of a given LM may vary in the set of features provided (e.g., having some 

parameters/hyperparameters fixed or tuneable) as well as in their non-functional features (e.g., 

being optimized for lower energy consumption, for larger memory size, for GPU usage etc.).  

One of the principal functionalities provided by LMs is that of performing predictions from 

time-series data (as implied by requirements such as 3.2.1, 3.2.2, 3.3.1, 3.3.2, and 3.3.10). In 

this context, the most promising approach for implementing such LMs appears to be that of 

employing RNNs (see Section 2.1). In particular, given the efficiency requirements, special 

focus will be given to RC implementations, such as the ESNs introduced in Section 2.1.3. In 

the case of ESNs, the implementations will make use of the standard NN architecture, but also 

of the advanced reservoir topologies that have been described in Section 2.1.4. These include 

the ring topology (which makes it possible to share a reservoir by only transmitting one floating-

point value instead of a quadratic number of weights), the DeepESN topology (which is 

particularly suited to capturing multiple time-scale dynamics in the data), and the GatedESN 

topology (which is useful when the data contains long-term dependencies).  

The LMs will also feature Federated Learning and Continual Learning functionalities as 

described in Sections 2.2 and 2.3. In this regard, LMs will provide functionalities for federated 

training strategies (such as the averaging or incremental strategies described in Section 2.2) by 

exposing appropriate methods to the other LMs. Similarly, LMs related to Continual Learning 

will expose the strategies described in Section 2.3.1. 

In addition to the functionalities that are strictly related to learning, LMs with application 

supporting functionalities will also be implemented. For instance, a task of automatic 

hyperparameter tuning and model selection of other LMs may be performed by dedicated, 

specifically designed LMs as well as dedicated code modules within the Application Logic. 

Another set of functionalities that are provided by LMs is the classification of the preferred 

driving mode for the user and a regression module of the preferred parameters that define the 

driving behaviour for the user at a moment, using Continual Learning functionalities (Section 

2.6) for the autonomous-driving scenario. With regards to the scenario of avionics, variations 

of these modules will also be applicable mainly focused on detecting anomalies based on 

continuously learning from the streams of data coming from the aerial vehicles’ sensors and 

software monitoring the hardware behaviour, providing relative recommendations. In addition, 

driving mode choice is also a key functionality towards autonomous car behaviour 

personalization, as described in Section 2.6.2, that the LMs will support. Specifically, LMs will 

support the choice of the appropriate driving mode and parameterization of the related 

controller parameters abiding by all the safety rules, while taking also into account the 

monitored human state along with the input parameters (i.e., car status, road/environment 

conditions, user feedback etc.). 

A further set of functionalities provided by LMs are those to estimate the dependability of 

NNs used in safety critical tasks, such as RNNs for object detection from video streams. In 

particular, the LMs shall implement functions to calculate each of the dependability metrics 
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introduced in section 2.4.3 to provide an evaluation of the dependability attributes introduced 

in section 2.4.2. Accordingly, the LMs will implement functionalities related to the attributes 

of dependability: Robustness, Interpretability, Completeness and Correctness. 

The other sub-functionalities to be implemented are at a lower layer of abstraction and they are 

needed to compute each of the previous functionalities. Such sub-functionalities are those 

related to the computation of the metrics: 𝑀𝑠𝑐𝑒𝑛𝑒 , 𝑀𝑛𝑒𝑢−𝑘−𝑎𝑐𝑡, 𝑀𝑛𝑒𝑢−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , 𝑀𝑎𝑑𝑣, 

𝑀𝑠𝑐𝑒𝑛−𝑝𝑒𝑟𝑓−𝑑𝑒𝑔𝑟, 𝑀𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 , 𝑀𝑂𝑐𝑐𝑆𝑒𝑛, 𝑀𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 . 

As required in section 2.4.2, to estimate the value of each dependability metric, these LMs shall 

use the parameters of the considered NNs and shall run these models providing them the 

appropriate inputs required from each metric. 

As mentioned above, this metrics are born in a task of object detection/recognition from images 

and videos. However, we can easily reuse or adapt 𝑀𝑠𝑐𝑒𝑛𝑒 , 𝑀𝑛𝑒𝑢−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , 𝑀𝑎𝑑𝑣, 

𝑀𝑠𝑐𝑒𝑛−𝑝𝑒𝑟𝑓−𝑑𝑒𝑔𝑟 and 𝑀𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 to work with different types of data streams (such as human 

physiological data streams). 
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5. Preliminary Results 

As a part of the activities of WP4, we have already started some aspects of the investigation, 

analysis, and development regarding relevant methodological concepts for the work that is 

expected during Y2. The major outcomes of this preliminary work (spanning all active tasks 

T4.1, T4.2, and T4.3) are reported in this section. 

Specifically, we have started investigating Federated Learning approaches to Reservoir 

Computing design of Recurrent Neural Networks, reported in Section 5.1. Interestingly, by 

exploiting the incremental approach for readout training we find that it is possible to accurately 

train ESN neural networks in a decentralized fashion in tasks related to stress and affect 

detection, as well as for human activity recognition. Moreover, despite the difficulties involved 

by the COVID-19 pandemic, we are setting up a pilot lab for human monitoring on UNIPI 

premises. Such a local experimental setup includes a variety of wearable sensors (e.g., ECG, 

GSR, EMG), EEG cap, eye trackers, cameras, high-quality and omnidirectional microphones, 

a large display, and accelerator cards (FPGA and GPU). In this context, in Section 5.2 we 

illustrate some basic functionalities of a stress estimation demo that is currently under 

development. The system, called ANSIA (A Neural System that Infers Affects), gathers real-

time sensor readings from wearable Shimmersensing devices and is equipped with both stress 

prediction functionalities (based on Deep Reservoir Computing, see Section 2.1.4) and 

visualization capabilities. Finally, we have started working on the aspects of modifying the 

driving functionality of the vehicle controllers based on the various inputs (driver state sensors, 

car perception sensors, etc.). In Section 5.3 we describe the work that is being performed and 

illustrate the preliminary results on two fundamental tasks related to driving model 

personalization based on the estimated human level of stress, and adjustment of non-linear 

driving control systems. 

Further ongoing works regard experimental benchmarking assessment of deep randomized 

neural models in human monitoring and stress estimation, and Continual Learning for Reservoir 

Computing models adaptation. Given the still highly preliminary nature of these last works, the 

results along these lines of research will be illustrated in the next reports on WP4 activities.   

5.1. Federated Reservoir Computing 

The objective in Federated Learning is to learn a model m by using a subset of clients u from a 

set of all clients p. In our case, the model m is an ESN. Each client has a local dataset D, which 

is a time-series data, and an ESN model m. The learning process of each ESN is not iterative 

like in Stochastic Gradient Descent, but rather, optimal weights are computed by a closed 

formula. 

The weights of the input layer and the reservoir layer are randomly initialized and are the same 

for all clients. Each local dataset D is a matrix of the shape (rows, features). In the first step, 

the input matrix is reshaped into (time steps, sequence length, features) in order to be fed into 

the ESN model. Data is time-series, and sequence length is fixed for all time steps. 

Random weights of the input and reservoir layers are fixed and are not trained during learning. 

The next step is calculation of the final state matrix, which has the shape (time steps, units). 

ESN calculates the final state matrix by using input and reservoir layer weights. In the final 

step, weights of the output layer are multiplied by the state matrix to compute our predictions 

Y. Therefore, we have the following equation: 

𝐘 = 𝐔𝐇 
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In the equation above, H is the state matrix, and U is the trainable weights of the output layer 

(readout). Y has the shape (time steps, classes) and U is in the shape of (units, classes). 

We are investigating two main approaches for learning the model in the federated scenario: 

federated averaging and incremental federated learning. These approaches have been described 

in Section 2.2. 

For benchmark, we have simulated a Federated Learning scenario for human state and activity 

recognition, employing the WESAD [133] and Heterogeneity Activity Recognition [134] 

datasets. Both datasets are publicly available. 

The WESAD dataset contains data for performing wearable stress and affect detection. It 

includes data about blood volume pulse, electrocardiogram, electrodermal activity, 

electromyogram, respiration, body temperature, and three-axis acceleration. The associated 

time-series are labelled to distinguish between four different affective states, namely neutral, 

stress, amusement and meditation. It includes recordings from 15 different subjects. 

The Heterogeneity Activity Recognition (HAR) dataset contains time-series from sensors in 

smartphones and smartwatches with the goal of human activity recognition. The sensors include 

accelerometers and gyroscopes, while the labelled activities are biking, sitting, standing, 

walking, stair up, and stair down. It includes recordings from 9 different subjects. 

The subjects available in the datasets have been used to train individual predictors, one per 

subject. All predictors are implemented as ESNs, all with the same shared reservoir topology. 

After the individual predictors have been trained (thus simulating the training that happens in 

the devices on the edge), the parameters of the readout are shared with a centralized entity 

(represented by the cloud in the federation) where they are aggregated. 

 

Table 3  Training and test accuracy on the WESAD dataset with respect to different numbers of clients, using 

the “averaging” aggregation strategy. 

Users 

Local 

Accuracy (%) 

Local 

Accuracy Std 

Train 

Accuracy (%) 

Train 

Accuracy Std 

Test 

Accuracy (%) 

Test 

Accuracy Std 

25% 97.83 0.02 81.55 0.09 63.42 0.10 

50% 98.01 0.03 77.63 0.09 71.75 0.12 

75% 98.02 0.024 76.77 0.11 74.69 0.09 

100% 98.02 0.028 76.57 0.12 75.81 0.10 

 

 

Table 4  Training and test accuracy on the WESAD dataset with respect to different numbers of clients, using 

the “incremental learning” aggregation strategy. 

Users 

Local 

Accuracy (%) 

Local 

Accuracy Std 

Train 

Accuracy (%) 

Train 

Accuracy Std 

Test 

Accuracy (%) 

Test 

Accuracy Std 

25% 98.36 0.01 93.14 0.04 65.96 0.08 

50% 98.60 0.01 87.51 0.06 74.89 0.09 

75% 98.59 0.02 84.45 0.05 76.56 0.07 

100% 98.51 0.02 83.78 0.06 77.92 0.07 
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Table 5  Training and test accuracy on the HAR dataset with respect to different numbers of clients, using the 

“averaging” aggregation strategy. 

Users 

Local 

Accuracy (%) 

Local 

Accuracy Std 

Train 

Accuracy (%) 

Train 

Accuracy Std 

Test 

Accuracy (%) 

Test 

Accuracy Std 

25% 93.39 0.00 93.39 0.00 59.71 0.07 

50% 93.74 0.02 78.02 0.08 67.96 0.08 

75% 93.77 0.02 71.37 0.09 70.70 0.06 

100% 93.69 0.03 71.38 0.11 73.74 0.05 

 

 

Table 6  Training and test accuracy on the HAR dataset with respect to different numbers of clients, using the 

“incremental learning” aggregation strategy. 

Users 

Local 

Accuracy(%) 

Local 

Accuracy Std 

Train 

Accuracy (%) 

Train 

Accuracy Std 

Test 

Accuracy (%) 

Test 

Accuracy Std 

25% 92.73 0.00 92.73 0.00 55.96 0.11 

50% 93.60 0.02 85.66 0.05 70.28 0.05 

75% 93.84 0.03 81.62 0.07 75.69 0.04 

100% 93.64 0.03 79.59 0.10 80.19 0.03 

 

 

As expected, all experiments show an increase in predictive accuracy with respect to increasing 

numbers of subjects (i.e., edge nodes in the federation). Both aggregation approaches (weight 

averaging and incremental learning) lead to good predictive accuracy, as shown in Table 3 and 

Table 4 for WESAD, and in Table 5 and Table 6 for HAR. The “local accuracy” columns 

indicate the performance of the model when trained only on the locally available data. 

Future work will include a thorough investigation of the differences, with respect to predictive 

accuracy and efficiency, between aggregation approaches. Moreover, investigations will focus 

on the case in which the reservoir topologies are not shared between the edge nodes. The 

experimental results will be strengthened by the use of additional real-world datasets for 

benchmarking the proposed techniques. 

5.2. Reservoir Computing for Stress Estimation: Demo 

We are working to the development of the ANSIA (A Neural System that Infers Affects) 

software, an application that provides an interface to the Consensys Bundle Development Kit, 

an all-in-one solution that allows the testing of sensory sensing capabilities offered by the 

platform Shimmer312, as illustrated in Figure 16.  

 

12 http://shimmersensing.com 

 

http://shimmersensing.com/
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Figure 16  Sample screenshot from the ANSIA software. 

The software provides two modes of use: WESAD and experimental. 

The WESAD mode offers the user the demo of an emotional state predictor. The artificial 

intelligence on which this is based will be composed of a Deep ESN trained through the dataset 

WESAD (WEarable Stress and Affect Detection), a multi-modal dataset created with the intent 

to provide a public resource that is a reference for the application of Machine Learning 

technologies (and not) to the topic of human emotionality classification (as already described 

in the previous Section 5.1). 

During the first access in this mode the user will be guided to the installation of the sensor setup 

by a short tutorial aimed at suggesting the correct positioning of the different measuring sensor 

devices. For the correct execution of the NN predictor it is essential that the user follows the 

guidelines defined by the software. There are three devices needed to use it: one Shimmer3 

GSR+ placed on the wrist and two Shimmer3 ExG placed on the chest. Through the first one 

the electrodermal activity (EDA) and the blood volume pulse (BVP) will be measured, from 

which the heart rate is obtained. With the second, an electromyography (EMG) and a 

measurement of respiration (RESP) are performed: 

• Using finger electrodes, the EDA signal is measured on the fingers of the non-dominant 

hand; 

• Using an optical pulse sensor, the signal related to BVP is measured through the index 

finger (upper part) or from the earlobe (solution that ensures greater stability) 

• The breathing signal is recorded through the use of electrodes, placed in the middle 

axillary lines (one on each side). 

• The EMG measurement is instead set on the basis of the WESAD experiment: the signal 

is recorded from the upper muscles of the trapezius. 

The predictions emitted by the Deep ESN model will be displayed in real-time on the screen. 

The software will also proceed to save the proposed predictions in a .csv file, usable for future 

analysis.  

The experimental mode, on the other hand, wants to be a free interface to the various features 

offered by the Shimmer platform. The user will be free to connect the devices he prefers, 

enabling and disabling at will the sensors from which to receive data. Compared to the 
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previously described scenario, this time is the user himself that decides and controls the 

configuration of each device. 

5.3. Vehicle control and autonomous driving profile personalization 

Being able to modify the driving functionality of the vehicle controllers based on the various 

inputs (driver state sensors, car perception sensors etc.) is a key factor towards autonomous 

driving profile personalization. In more details, we have identified two main individual tasks: 

- Choose a different driving model based on the driver’s stress level 

- Use model predictive control (MPC) for smooth adjustment of the nonlinear driving 

control system 

For research purposes we use an open-source simulator for autonomous driving (CARLA) for 

experimenting and evaluating our approaches. Currently, Carla’s behaviour controller:  

• Implements three types of navigation agents 

• Utilizes three types of behaviour (let’s call them driving modes) that define the way the 

autonomous vehicle responds to driving decisions. These modes are referred to as: 

Cautious, Normal and Aggressive 

• And uses PID controllers to control the longitudinal, lateral and speed control 

Based on the type of behaviour/driving mode chosen for the execution of a driving scenario, 

the simulator passes different parameter values to the PID controllers that control the 

autonomous vehicle when the autopilot is turned on. 

Given the default Carla behaviour controller, we have modified the behaviour agent used by 

the autopilot so that we record a keystroke that simulates user’s expression of stress, which in 

the context of the WP4 tasks driver’s stress will finally be provided by a stress level recognition 

learning module. Based on the level of distress expressed by the driver, we dynamically change 

the agent’s driving mode. At this point, we are also working on training a Reinforcement 

Learning agent using Carla’s camera sensors and longitudinal, lateral proximity sensors to test 

whether this agent can be used to control the car’s behaviour based on the driver’s stress levels. 

Finally, in the context of WP4 task T4.3, we are exploring Gekko and do-mpc libraries to build 

an MPC controller that will be added to the Carla autopilot functionality. This MPC integration 

will allow of more refined control of the autonomous vehicle and provide the ability of 

modifying the vehicle’s control parameters on the fly based on various input parameters like 

the user stress.  

Based our initial tests, this MPC can provide fine grained autonomous vehicle control and at 

this point we are in the process of integrating this MPC controller into Carla’s source code to 

examined realistic driving scenarios on Carla’s integrated world maps. In parallel with this task, 

we are also designing a machine learning module that will learn the desired MPC coefficients 

based on a set of sensor parameters as well as user emotions (i.e., stress). This will allow real-

time fine-tuning of the MPC for different drivers, changing driver profiles or adjusting the 

driving behaviour under different driving conditions or as driver and/or driver’s emotions 

change etc. 

Under the prism of validation and verification with regards to the perceived human safety and 

trustworthiness raised in Section 2.6.2 we plan on following a similar approach for evaluating 

the effect of our model with respect to the different scenarios and types of feedback provided 

to the user. We will also simulate various driving scenarios in the Carla simulator and the 

resulting impact on users’ trust [132] and comfort will be taken into account. All of our current 

development on the Carla simulator for evaluating our LMs towards autonomous driving 
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personalization is planned with respect to following the same set of rules and traffic situations 

as well as using the same set of evaluation metrics as they have already been set in the Carla 

Autonomous Driving Challenge. 
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6. Conclusions 

WP4 aims at designing the necessary methodologies for creating the TEACHING AIaaS 

software infrastructure. The currently active tasks focus on the development of the core ML-

related components (T4.1), on the monitoring of the human state in CPSoS from sensor data 

(T4.2), and on human-centric personalization (T4.3).  

In this document we provided a state-of-the-art analysis of the involved ML methodology, 

highlighting the identified roles of Recurrent and Reservoir Computing NNs, Federated and 

Continual Learning, metrics for NN dependability and safety, human state monitoring, and 

human-centric personalization in autonomous vehicles. We also gave a preliminary analysis of 

the TEACHING AIaaS requirements and the system’s design. Finally, we provided a brief 

insight into the preliminary results achieved in the active tasks, in the fields of Federated 

Reservoir Computing, stress estimation from physiological data, and autonomous driving 

personalization. 

Following the envisaged project’s lifecycle, the outcomes of the work conducted in WP4 and 

described in this document, along with that of the other technical WPs, will drive the efforts in 

the core technology building during Y2 (Phase 2). From the WP4 viewpoint, the effort will 

concentrate on implementing the main concepts of dependable, distributed, federated, and 

lightweight RNNs for CPSoS, human monitoring, and personalization in autonomous vehicles. 

These activities will be complemented by the work on privacy-aware AI models from Task 

T4.3 (starting at M13) and will result in the integrated mockup of the AIaaS system in D4.2, 

hence contributing to the project’s milestone MS2 on the first integrated setup of the 

TEACHING platform at M20. 
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