

Horizon 2020 Program (2014-2020)

A computing toolkit for building efficient autonomous

applications leveraging humanistic intelligence

(TEACHING)

D1.2: TEACHING CPSoS architecture and specifications†

Contractual Date of Delivery 31/08/2021

Actual Date of Delivery 27/09/2021

Deliverable Security Class Public

Editor Konstantinos Tserpes (HUA)

Contributors UNIPI: Davide Bacciu, Daniele Mazzei

HUA: Konstantinos Tserpes, Iraklis Varlamis,

Ioannis Kontopoulos, Teta Stamati

CNR: Alberto Gotta

TUG: Jürgen Dobaj, Georg Macher

AVL: Omar Veledar

I&M: Lorenzo Giraudi

M: Calogero Calandra

TRT: Sylvain Girbal

ITML: Mina Marmpena

IFAG: Jakob Valtl

Quality Assurance Emanuele Carlini (CNR)

† The research leading to these results has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 871385.

Ref. Ares(2021)5877392 - 27/09/2021

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 2 - August, 2021

The TEACHING Consortium

University of Pisa (UNIPI) Coordinator Italy

Harokopio University of Athens (HUA) Principal Contractor Greece

Consiglio Nazionale delle Ricerche (CNR) Principal Contractor Italy

Graz University of Technology (TUG) Principal Contractor Austria

AVL List GmbH Principal Contractor Austria

Marelli Europe S.p.A. Principal Contractor Italy

Ideas & Motion Principal Contractor Italy

Thales Research & Technology Principal Contractor France

Information Technology for Market Leadership Principal Contractor Greece

Infineon Technologies AG Principal Contractor Germany

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 3 - August, 2021

Document Revisions & Quality Assurance

Internal Reviewers

1. Emanuele Carlini (CNR)

Revisions

Version Date By Overview

1.0 27/09/2021 Editor Final

0.4 25/09/2021 Reviewer Comments on draft

0.3 23/09/2021 Editor First draft.

0.2 07/09/2021 Contributors Contributions

0.1 28/07/2021 Editor ToC.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 4 - August, 2021

Table of Contents

LIST OF TABLES .. 5

LIST OF FIGURES .. 6

LIST OF ABBREVIATIONS ... 7

EXECUTIVE SUMMARY ... 8

1 INTRODUCTION ... 9

1.1 RELATIONSHIP WITH OTHER DELIVERABLES ... 10

2 HUMANISTIC INTELLIGENCE ... 12

3 TEACHING CPSOS APPLICATION MODEL ... 14

4 TEACHING PLATFORM & NON-FUNCTIONAL REQUIREMENTS .. 16

4.1 TEACHING PLATFORM INTRODUCTION .. 16
4.2 NON-FUNCTIONAL REQUIREMENTS ... 17

4.2.1 Safety ... 17
4.2.1.1 Quantified Requirements: Safety Assessment ... 18

4.2.2 Acceptance .. 20
4.2.2.1 Quantified Requirements ... 20

4.2.3 Real time performance .. 20
4.2.3.1 Quantified Requirements ... 21

4.2.4 Energy efficiency ... 21
4.2.4.1 Quantified Requirements ... 22

4.2.5 Cybersecurity .. 22
4.2.5.1 Quantified Requirements ... 23

4.2.6 Dependable AI ... 23
4.2.6.1 Quantified Requirements ... 24

5 TEACHING USE CASES AND FUNCTIONAL REQUIREMENTS .. 26

5.1 USE CASE #1: AUTOMOTIVE ... 26
5.2 USE CASE #2: AVIONICS ... 27
5.3 FUNCTIONAL REQUIREMENTS ... 28

6 DESIGN-LEVEL DECISIONS .. 29

6.1 ESTABLISHED TECHNOLOGIES ... 29
6.2 DESIGN DECISIONS .. 30
6.3 DESIGN DECISION PER FUNCTIONAL REQUIREMENT (FR) .. 32

6.3.1 FR1: Integration with the DMU .. 32
6.3.2 FR2: Sensing ... 32
6.3.3 FR3: Communication with external services .. 33

6.3.3.1 Intermittent communication scenarios ... 35
6.3.4 FR4: Application deployment .. 37
6.3.5 FR5/FR6: Model Training and Inference .. 38

7 TEACHING PLATFORM ARCHITECTURE .. 40

7.1 IMPLEMENTATION RECOMMENDATIONS .. 43

8 CONCLUSIONS .. 47

9 REFERENCES .. 48

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 5 - August, 2021

List of Tables

Table 1: Section map ... 10
Table 2: Deliverable grouping for verification of TEACHING Milestone 1 .. 11
Table 3: Safety Assessment ... 18
Table 4: Acceptance Assessment .. 20
Table 5: Real Time functional requirement... 21
Table 6: Energy Efficiency Requirements .. 22
Table 7: Cybersecurity Requirements ... 23
Table 8: Dependability Requirements ... 25
Table 9: Summary of functional requirements .. 28
Table 10: Summary of TEACHING Platform Requirements ... 29
Table 11: Technology selection based on requirements .. 30

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 6 - August, 2021

List of Figures

Figure 1: Depiction of the IIRA Viewpoints from and mapping of focus of TEACHING Deliverables

MS2 ... 11
Figure 2: Reciprocal relationship between human and computer in humanistic intelligence 12
Figure 3: A TEACHING Application closes the feedback loop between the human and the DMU 14
Figure 4: TEACHING Platform within the context of a system and its environment 16
Figure 5: Automotive CPSoS Application .. 26
Figure 6: Avionics CPSoS Application ... 27
Figure 7: High-level view of design decisions: Separation of underlying HW boards and communication

with external services .. 31
Figure 8: Sensors API design .. 33
Figure 9: Example of the multiaccess communication and computing infrastructure for the automotive

use case in Teaching .. 34
Figure 10: Overlapped scenario .. 36
Figure 11: Non-overlapped scenario ... 37
Figure 12: AIaaS SW Architecture Diagram, current design (source: D4.2: “Report on integrated

mockup of the AIaaS system”) .. 38
Figure 13: TEACHING platform conceptual architecture .. 41
Figure 14: Summary of TEACHING Platform Architecture .. 43

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 7 - August, 2021

List of Abbreviations

EC European Commission

WP Work Package

e.MMC Embedded MultiMediaCard

SDF Sensor Data Fusion

PEC Physiological, emotive, and cognitive

SOTIF Security of the intended functionality

ML Machine Learning

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 8 - August, 2021

Executive Summary

The objective of this deliverable is to provide a definition and a design for an application-

agnostic TEACHING Platform. Given the generic nature of the platform, we resort in providing

a high-level component-level architecture and implementation recommendations that should be

adapted by potential use cases. Technical-oriented work packages can use this design and

instantiate it in order to deliver implementations that are tailored to the project use cases.

The proposed architecture design is derived a) from the project vision and most importantly the

concept of Humanistic Intelligence; b) from the relevant non-functional requirements, and; c)

from the functional requirements. Analyzing those allowed us to make some key-design

decisions and base our architecture on top of a well-established baseline tools and technologies.

The remaining work needs to follow closely the implementations of the proposed architecture

and use them to evaluate a set of KPI defined for each one of the requirements.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 9 - August, 2021

1 Introduction

This document provides a detailed account of the work conducted in the frame of “WP1:

Requirements, Design and Integration of the Human-Aware CPSoS”. WP1 operates as an

overarching WP to the technical WPs (WP2-5) providing directions and aggregating input from

them with a final goal to formalize the concepts of the TEACHING CPSoS. The objectives of

WP1 are to:

• Review the state-of-the-art, track future technology trends, and identify appropriate

hardware platforms, sensors and software tools.

• Identify and track end user and technical requirements, querying use case partners and

technical contributors of TEACHING.

• Specify the overall architecture for the TEACHING CPSoS by identifying components,

their functionalities and interconnection, ensuring their coherency with the requirements

and global architecture.

• Integrate the components/prototypes developed by the technical WPs and setup the

integration environment in order to deliver the overall integrated TEACHING CPSoS

and its demonstrators.

This document comes as a continuation of the report “D1.1: Report on TEACHING related

technologies SoA and derived CPSoS requirements” which was delivered on M12

(31/12/2020). The first two objectives have already been covered by D1.1 and this report (D1.2)

is focusing on the effort to provide the design and specifications for the TEACHING platform,

using the results reported in D1.1. That is, the focus of the work reported here is targeting the

3rd objective and as such, it attempts to provide a definition of the architecture and

implementation recommendations for an application-agnostic TEACHING Platform.

A starting point to this analysis was the TEACHING project goal as defined in the Description

of Action (ref appendix to the Grant Agreement):

The goal of the TEACHING project is to design a computing platform and the associated

software toolkit supporting the development and deployment of autonomous, adaptive and

dependable CPSoS applications, allowing them to exploit a sustainable human feedback to

drive, optimize and personalize the provisioning of their services.

Based on that we distinguish two main artefacts:

• TEACHING Platform

o A computing platfom

o A development and deployment software toolkit

• TEACHING Applications

o Autonomous, adaptive and dependable CPSoS applications

A main focus of this document is to further define these concepts in the context of the project

vision and especially that of humanistic intelligence.

The document reports the efforts to provide those definitions in the form of design patterns and

recommendations. Those can serve as a guidance to the Research and Development (R&D)

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 10 - August, 2021

work of the project in its effort to deliver its promised outcomes for the particular application

domains.

For the remaining of the document, we will refer to the computing platform and the software

toolkit collectively as the TEACHING Platform which is meant to support the development

and deployment of the TEACHING applications.

In order to fulfil the T1.2: “Architecture design” objectives, the participating partners built on

the analysis of the TEACHING CPSoS (system) requirements already defined in the work of

T1.1: “Requirement identification”.

To convey the results of this work, this report starts with a theoretical definition of the

humanistic intelligence (Section 2) and then uses it to define the TEACHING CPSoS

Applications (Section 3). The latter is a central step in the identification of the requirements and

the definition of the platform generic properties (referred to as “modules”). Those modules are

used for the sketching of a conceptual TEACHING Platform and they relevant non-functional

requirements (Section 4). A similar analysis for the elicitation and update of the relevant

functional requirements is done on the basis of the project use cases (Section 5). Leveraging on

the functional and non-function requirements analysis we present the design decisions (Section

6) which finally lead to the presentation of the TEACHING Platform architecture and

implementation recommendations provided to WP2-5 (Section 7).

To simplify the reading of this document we provide the following table, explaining what are

the objectives of each of the section.

Table 1: Section map

Section Title Objective/Outcome

Section 2 Humanistic Intelligence

Introduction to the Humanistic Intelligence overarching

concept

Section 3

TEACHING CPSoS

Application model

Umbrella definition of the TEACHING CPSoS and

Platform core modules

Section 4

TEACHING Platform and

non-functional requirements

Analysis of non-functional requirements for the

Platform

Section 5

TEACHING Use cases and

functional requirements

Definition of Platform functional requirements on the

basis of the project use cases

Section 6 Design-level decisions Presentation and justification of key-design decisions

Section 7

TEACHING Platform

architecture

Presentation of Platform architecture and

implementation recommendations

1.1 Relationship with other deliverables

There is a group of related deliverables, i.e., D1.2, D2.2, D3.2, D4.2 and D5.2 (Table 2), all of

which serve as a mean of milestone MS2 verification. That is the second project milestone,

entitled “First integrated setup with mock-up of the TEACHING platform”.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 11 - August, 2021

Table 2: Deliverable grouping for verification of TEACHING Milestone 1

D1.2 TEACHING CPSoS architecture and specifications

D2.2 Refined requirement specifications and preliminary release of the computing and

communication platform

D3.2 Interim Report on Engineering Methods and Architecture Patterns of Dependable

CPSoS

D4.2 Report on integrated mockup of the AIaaS system

D5.2 Preliminary use case deployment, implementation and integration report with

related dataset release

The mapping of the viewpoints of the technical WPs, as well as the integration intentions of the

TEACHING technology bricks in domain use-cases is depicted in Figure 1.

Figure 1: Depiction of the IIRA Viewpoints from 1 and mapping of focus of TEACHING Deliverables MS2

1 https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/

D5.1

D3.1

D1.1

D2.1 D4.1

https://iiot-world.com/industrial-iot/connected-industry/iic-industrial-iot-reference-architecture/

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 12 - August, 2021

2 Humanistic Intelligence

Humanistic Intelligence (HI) is intelligence that arises because of a human being in the feedback

loop of a computational process, where the human and computer are inextricably intertwined.

In the context of TEACHING the design of a CPSoS architecture centered on the concept of

humanistic intelligence becomes mandatory.

The TEACHING application of HI focuses on the development of a CPSoS able to match and

adapt biological brain capabilities and needs. More generally TEACHING CPSoS focuses on

the creation of an AI-powered system that results from a feedback loop between a

computational process and a human being, where the human and computer are inextricably

intertwined.

In the field of human-computer interaction (HCI) it has been common to think of the human

and computer as separate entities. HCI emphasizes this separateness by treating the human and

computer as different entities that interact. However, HI theory thinks of the interacting human

and the computer with its associated input and output facilities not as separate entities, but

regards the computer as a second brain and its sensory modalities as additional senses, in which

synthetic synesthesia merges with the human's senses. When a wearable computer or an

enclosing machine (airplane, car and any other system that includes and transport human

beings) functions in a successful embodiment of HI, the computer uses the human's mind and

body as one of its peripherals, just as the human uses the computer as a peripheral. This

reciprocal relationship is at the heart of HI (Figure 2).

Essentially, the classic human-in-the-loop approach typical of HCI is here reframed and

addressed as a design problem. The questions we decided to answer in the design of the

TEACHING CPSoS architecture are: “how do we incorporate useful, meaningful human

interaction into an AI-powered system?”, “how we leverage human intelligence for improving

the AI?”.

This kind of human-centered design approach is at the center of research in fields like

Interactive Machine Learning, in which intelligent systems are designed to augment or enhance

the human, serving as a tool to be wielded through human interaction. We can see this type of

research expressed in the works of Alison Parrish, poetical engineer, as well as at the Stanford

HAI launch event in March 2019, which highlighted collaborative social systems; computers

that learn to help and many other humanistic intelligence application examples (more info here).

Figure 2: Reciprocal relationship between human and computer in humanistic intelligence

https://hai.stanford.edu/news/humans-loop-design-interactive-ai-systems

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 13 - August, 2021

Humanistic Intelligence is applied in Teaching by designing a CPSoS architecture that

intrinsically enable HI. This is achieved by a continuous supervision of all the design activities

that aims at guaranteeing that human is always considered as a pillar and central element of the

entire system. This supervising activity has been conducted in Task 1.3: “Human-centered

design”.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 14 - August, 2021

3 TEACHING CPSOS Application model

With HI theory in mind, the goal shifts to the definition of the TEACHING Platform and of its

design and specifications. Therefore, we need to first understand what the platform application

requirements are, i.e., we need to define the TEACHING Applications. To do so, we start with

the underlying concepts, i.e., the definition of the TEACHING CPSoS as it was formulated in

D1.1.

Assume a cyber-physical system (CPS) whose behaviour is regulated by a feedback control

loop. This system can be a vehicle or an airplane and its behaviour ranges from simple

navigation to emergency manoeuvres. This system is stable/dependable in the sense that it

achieves its objectives which are dictated by concrete rules/policies, under a wide range of

conditions. TEACHING introduces a new objective to the control loop, through the integration

of a new, potentially non-dependable system. This system brings along a new array of sensors

for monitoring its state, different than then ones that the original CPS is using. The new

integrated system of systems (SoS) extends the original CPS and it remains a CPS itself. We

will refer to it as the TEACHING CPSoS. As a CPS, it needs to maintain the properties of

CPSs.

Following the principles of the humanistic intelligence concept the TEACHING CPSoS is

instantiated by introducing a human in the loop as follows.

We assume that there is a machine that is intelligent enough to make decisions autonomously.

We will refer to that machine as a Decision-Making Unit (DMU). The DMU decisions affect

the state of a system, e.g., a vehicle or airplane. Those decisions are made to attain some preset

objectives about the system state. That is, the DMU is trying to maintain the prescribed system

state(s).

We now introduce a human as part of this system. The system’s state now is extended to include

the human state. In such a way, the human is affected by the DMU but also affects it, closing

the feedback loop.

A TEACHING Application is the mechanism that enables the integration of the human state

to the system state (Figure 3).

Figure 3: A TEACHING Application closes the feedback loop between the human and the DMU

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 15 - August, 2021

Based on the above, a quick conclusion is that a platform that would support a TEACHING

Application should be able to support at least the monitoring and quantification of the human

state and its integration to the DMU. We consider those three properties as the basic functional

requirements for the TEACHING CPSoS Platform dubbed “TEACHING Platform”. To ensure

that the platform maintains its general-purpose nature, we add one more property:

programmability. In detail,

• Monitoring: The platform must be able to monitor the human state using appropriate

sensors and possibly considering external factors, such as the environment to which the

system is operating

• Quantification: The platform must be able to model the human state and quantify it in

a way that is meaningful to the DMU

• Integration: The platform must be able to incorporate the quantified human state in the

system state so as for the DMU to use it.

• Programmable: The platform must provide an interface that will enable the dynamic

creation of TEACHING applications.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 16 - August, 2021

4 TEACHING Platform & non-functional requirements

4.1 TEACHING Platform introduction

The TEACHING Platform is the environment that enables the TEACHING Applications to

close the feedback loop. The business actors of the TEACHING Platform were identified in

D1.1 (Section 3.1), namely, the owners and the users of the platform and their agents, i.e.,

platform and application providers and platform administrators and application developers.

Apart from those roles, there are two central human actors in a TEACHING Application that

the TEACHING Platform should accommodate their needs: the TEACHING Application

developer and the human whose feedback needs to be incorporated in the loop. Figure 4 presents

the high-level building blocks of the TEACHING Platform and its interaction with the two

human actors as well as with the DMU and by extension, the system.

Figure 4: TEACHING Platform within the context of a system and its environment

The figure depicts the 4 basic modules of the TEACHING Platform and the fact that three of

them (Programming, Monitoring and Integration) are interacting with the actors and system.

The Monitoring module interacts with the Human in the system, collecting data that will allow

the Quantification module to model the human state. The Integration module then, integrates

the human state to the system state that feeds the DMU to control the actuators and manage the

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 17 - August, 2021

system. The sensors that create the primary system state may or may not take into consideration

the environment.

This flow could be functional as it appears, however there are certain constraints that dictate

certain non-functional requirements to be taken into consideration should the TEACHING

Platform be considered a seed for a viable product.

Among the primary constraints is the fact that the TEACHING Platform is an addition to an

existing system rather than a built-in feature. This implies that the TEACHING Platform must

not affect the expected functionality of the original system. This functionality is crucial to

preserve the systems’ properties that cannot be compromised. One such crucial property is

safety. We need to find engineering approaches that guarantee that the integration of human

state in the system state does not lead to safety metrics degradation.

Furthermore, the resources upon which the DMU is operating may be limited. This fact may

compromise the CPS’s real-time performance. The TEACHING platform may infuse a delay

in the CPS’s operations that cannot be afforded and therefore the integration of the states must

happen in a way that will not affect normal performance.

On a similar note, the TEACHING Platform may impact the CPS by limiting its lifetime due to

energy constraints. The CPS may operate on limited energy resources making the execution of

the TEACHING platform or its operations on the same energy source impossible.

Finally, we need to address the modules interaction with the human and ensure that it happens

in a user-friendly way. This has to be considered also from a commercial point of view, i.e., if

a new feature requires an obtrusive method to operate, then the customers will never embrace

it.

Those non-functional requirements are further elaborated in what follows.

4.2 Non-functional requirements

In this section we narrow down the discussion about the TEACHING Application non-

functional requirements (NFRs) by explaining how they affect the TEACHING Platform. To

quantify the latter, we define metrics to be followed for the assessment of the architecture design

and implementation.

4.2.1 Safety

Safety is itself an application of design rules and requirements useful to accomplish several

functionalities at vehicle level by ensuring always absence of unreasonable risk due to hazards

resulting from performance limitation or malfunctioning behaviour of safety-related E/E

systems. However, in this respect, Safety by design can be viewed as an essential tool (as an

NFR) to achieve a dependable product through the definition of the technical safety concept

which contains all foreseen functional requirements. In order to facilitate the ability to verify

the system architectural design, the technical capability of the intended hardware and software

elements regarding the achievement of functional safety, and the ability to execute tests during

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 18 - August, 2021

system integration, safety requirements have to be clear and precise, with a layered definition

based on the different design abstraction level that goes from system to HW and SW.

The alignment of the Security Of The Intended Function (SOTIF) and Functional Safety is

fundamental to implement possible modifications to the system design at a sufficiently early

stage. The Identification and Evaluation of Triggering conditions as initiator for a hazardous

behaviour, considers system limitations and evaluates possible functional modification to reach

an acceptable SOTIF risk according to the definition of Technical Safety Concept of ISO

262622 processes. In addition to a safe design and development process, assessment should

carry on iteratively from verification to validation and comprise safety analyses and

experiments.

4.2.1.1 Quantified Requirements: Safety Assessment

As mentioned in the standard ISO 26262 and ISO 21448, principles of safety for automated

driving provide a foundation for deriving a baseline for the overall safety requirements and

activities necessary for the different automated driving functions. Based on state-of-art, the

interpretation of the principles of safety with respect to AI -based functions should be fully

explored in accordance with the upcoming standard ISO-PAS 8800; the field of AI, and in

particularly its use for critical applications, is developing very rapidly. ISO-PAS 8800 should

describe system and function-specific evidence provided to support a system level safety

assurance case commensurate to the principles of ISO 26262 and ISO 21448 as well as other

emerging standards such as ISO TS 5083.

Hence, each functional safety requirement should be defined taking into account a set of main

principles as safety baseline. Particularly, the safety principle for Safety Assessment traces to

all safety measures that a CPSoS should have. This derives from the expectation that product

development would be responsible for delivering a necessary level of evidence for the

verification and validation of the safety measures, which may then be reviewed by an assessing

group.

Table 3: Safety Assessment

ID Title Description means of verification (KPI)

NFR1

Functional

Safety

Assessment

Evaluate the status of the

activities/work products related to

the different parts of the ISO

26262 safety-lifecycle and their

availability, with respect to the

maturity of the project foreseen by

the Safety Plan and Project Plan

in order to achieve the safety

compliance

RISK matrix = W *EC

2 https://www.iso.org/obp/ui/fr/#iso:std:iso:26262:-3:ed-2:v1:en

https://www.iso.org/obp/ui/fr/#iso:std:iso:26262:-3:ed-2:v1:en

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 19 - August, 2021

W: Weight of the findings or

issues according to the work

products:

- Formal finding scores 1

- Process finding scores 2

- Product finding scores 3

EC: Real completeness wrt

expected contents completeness:

- Completeness scores 1

- Incompleteness scores 2

- Missing contents scores

3

Assessment/Risk Scoring rules:

- Full compliance scores 1

(product development

accepted)

- Partial compliance

scores 2 (product

development with

conditional acceptance)

- Unsatisfactory

compliance scores 3

(product development

rejected)

Note: for the final product

release is necessary to reach the

product development acceptance

(full compliance)

NFR2
SOTIF

Assessment

Evaluate the status of the

activities/work products related to

the different parts of the ISO

21448 safety-lifecycle and their

RISK matrix = W *EC (see KPI

ID.001)

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 20 - August, 2021

availability, with respect to the

maturity of the project foreseen by

the plan for SOTIF activities and

Project Plan in order to achieve

the safety compliance

4.2.2 Acceptance

The automotive industry’s shift towards driving automation is a gamble that can only pay off if

there is an appropriate level of user acceptance so that the end-users can reap real benefits from

the offered technical solutions. As digitalisation is in its full swing, the noticeable effect is not

only that of the product development, but also the need for the provision of services, many of

which are data-based or data-reliant. TEACHING fits in this equation by developing the

appropriate set of algorithms and tools to support the shift towards driving automation. While

studies suggest a strong connection between acceptance and trust in technical solutions

[Dimi20] and [Mol18], TEACHING also has an additional advantage when it comes to the

development and integration of new technology solutions. The advantage stems from the

project’s focus on human-centric control of the safety-critical systems. As the control is

intended to objectively respond to the user subjective perception of the environment, the

expectation is that through continual usage of the offered solutions (integrated into the

appropriate industrial environment) the user acceptance is to increase. Such increase has already

been demonstrated through the improvement of trust in the automated system [Cle21].

4.2.2.1 Quantified Requirements

Table 4: Acceptance Assessment

ID Title Description means of verification (KPI)

NFR3
Acceptance

levels

Quantify the subjective ratings of

overall satisfaction with the

driving simulator experience and

determine the increase of user

acceptance level.

Quantification of the driving

simulation satisfaction level

through subjective user

questionnaires and correlation of

the obtained answers to the

(objective) psychophysiological

measurements.

4.2.3 Real time performance

Hard real-time applications are characterized by stringent real-time constraints at process or

task level, expressed as expected schedule properties and termination deadlines. As a

consequence, correctness of an operation is not only defined by functional correctness, but also

by time-window during which those operations or tasks have to be executed.

The recent shift to multi-core processor, and now the shift to heterogeneous architectures with

AI accelerators is introducing new sources of time variations identified as timing interference.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 21 - August, 2021

Consequently, the industry is facing a trade-off between performance and predictability

[Kir08], [Mez11].

Several studies [Bin14], [Now12] have shown that the maximum observed execution time

slowdown on a multicore / heterogeneous environment could be much higher than the expected

benefits of using such architectures. Also, the common practice of determining Worst Case

Execution Time (WCET) relying on static program analysis tools [Wil08], detailed hardware

model, as well as measurement techniques through execution or simulation [Hec05] is not

currently able to deal with multi-core and heterogeneous architectures.

Timing and resource consumption guarantees are therefore especially required for AI

accelerators and their associated software, with hard real time guarantees especially for the

inference part of the algorithm that requires to be executed online on the embedded board.

4.2.3.1 Quantified Requirements

If the hard real time requirements are very hard to guarantee as required by the certification

standards. Detecting deviation from the requirements is much easier to detect as they are

reflected by deadline misses at task or process levels. Additional deadlines need to be

expressed at AI level, especially for the inference part so that deadline misses could also be

detected at that level that is not necessarily captured by the RTOS scheduler.

Table 5: Real Time functional requirement

ID Title Description means of verification (KPI)

NFR4
Real-

Time

Guarantee hard real-time

scheduling policy and deadlines

of periodic and aperiodic tasks.

Number of deadline misses not

increased due to monitoring and

AI features

4.2.4 Energy efficiency

Energy efficiency is a key point in CPSoS. Especially setups where the systems are deployed

on the edge. Usually not only energy resources in the form of batteries or other power supplies

are limited. Also the hardware parts are planned to be as small as possible and as large as

necessary to meet the requirements. This holds for all hardware parts like computing, storing

and sensing as well as actuator hardware. Specialized hardware like GPUs, FPGAs, ASICs or

other accelerators are, if integrated in the CPSoS, an ideal way to maximize energy efficiency

if the tasks carried out by the CPSoS can make use of them. Once the hardware is defined a

great deal of energy efficiency can be gained by software optimization. During the investigation

on IFAG´s demonstrator with a special focus on the software optimization with the purpose of

systems energy efficiency localized the following topics as most relevant for CPSoS energy

efficiency with regard to software optimization:

• Reduction of schedule frequency, thus the update rate with which repetitive tasks are

carried out to operate at the lowest frequency possible, while still meeting system

operation requirements.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 22 - August, 2021

• Develop software with a version control system that includes testing on unnecessary

components to reduce the operating system to its needed functionality. This way tasks

and functionality that is outdated and not needed in the latest version will not be

implemented on the edge and reduce storage and computation needs.

• Intelligent tests that look for functionality that is processed various times throughout the

system at different points can lead to an optimization, thus combining, executing the

operation only once and storing the result globally, thus reducing the processing needs.

In this way, unnecessary and repetitive calculation of code can be avoided.

4.2.4.1 Quantified Requirements

Quantification of energy efficiency is usually most interesting when compared to other systems

performing the same task or earlier versions. The main driver for energy efficiency is usually

the limitations of the hardware or power resources or external specifications like timing or other

constrains.

Table 6: Energy Efficiency Requirements

ID Title Description means of verification (KPI)

NFR5
Energy

Efficiency

Determine the energy efficiency

in terms of measurable

parameters and compare

available parameters to

benchmark alternatives or earlier

versions.

-overall power consumption

compared / related with

-memory / CPU usage

-data throughput

-timing parameters

4.2.5 Cybersecurity

Artificial intelligence (AI) can be used to foster security in CPSoS by providing proactive

security mechanisms to detect both well-known attack patterns, but also predict unknown ones.

In TEACHING, AI-powered components can provide solutions for monitoring and applying

dependability constraints, i.e., an anomaly detection module can be used to monitor network

traffic, detect abnormal patterns, and estimate their critical status to inform a human or decide

an action on each own. In that sense, the AI component monitors other system components and

their communications, makes inferences about the normality of their behaviour, and takes

actions to attain the dependability of the system – either with a human feedback or based on its

own policies or models. Deep learning algorithms used for anomaly detection are not restricted

by specific rules or malware signatures, and thus, they can potentially generalize better since

they are essentially built to learn expressive representations of complex data and model

nonlinear relationships within the data domain, instead of applying specific rules. In other

words, an AI-based solution at inference, will look for patterns of malicious events, instead of

hard-coded instances. In domains where the task and the data dimensionality are of high

complexity, deep learning algorithms can offer a scalable solution.

The current anomaly detection algorithm implemented as a module for TEACHING AIaS API

is a Long Short-Term Memory Autoencoder (LSTM-AE) [Mal17]. The model follows from the

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 23 - August, 2021

conceptual paradigm of learning feature representations of normality [Pang20] to detect

anomalies. Essentially, this paradigm couples feature learning and anomaly scoring in a unified

model. This is achieved by learning representations which are forced to capture underlying

regularities from normal data using a generic objective function. The anomaly scoring is then

calibrated based on the reconstruction error of the normal representation, and values exceeding

it are indicators of anomalies. The generic nature of the algorithm makes it suitable for other

applications besides cyber threat detection within the TEACHING framework. For example,

anomaly detection can be applied to human biometrics data, or recourses consumption

measurements, runtimes, and other unlabelled time-series data.

4.2.5.1 Quantified Requirements

For the evaluation and verification of the anomaly detection model the Key Performance

indicator selected is the recall rate metric on benchmark datasets. Low anomaly detection recall

rate poses a challenge to a plethora of anomaly detection methods that suffer from a high false

positive rate of detected anomalies. Thus, a high recall rate is one of the most important and yet

difficult challenges, especially because it might be achieved at the expense of failing to detect

enough truly anomalous events.

Table 7: Cybersecurity Requirements

ID Title Description means of verification (KPI)

NFR6

Security:

Integrity

Data streams are monitored with

an anomaly detection module to

detect rare or abnormal events and

unexpected patterns. The model

used is a Long Short-Term

Memory Autoencoder evaluated

on labelled benchmark datasets.

Recall = TP / (TP + FN)

TP: True positives

FN: False negatives

4.2.6 Dependable AI

The use of data-driven AI techniques as building blocks of ICT systems needs to be carefully

assessed from a dependable system engineering perspective, especially when targeting

applications that interface and interact with humans, either on the cyber or on the physical

world. As this is the reference scenario for applications that will be supported by the integrated

TEACHING platform, its development process needs to carefully account for requirements

associated to ensuring dependability of the TEACHING AI components. These requirements

need to target the specificity of the learning models integrated into the AI-as-a-service toolkit

which are elements of the Recurrent Neural Networks (RNNs) family, The choice of this class

of learning models has been driven by the fact that they are designed to model sequential

information, which is the prevalent data type in a CPSoS. As an additional level of detail,

TEACHING designs and develops RNNs from the Reservoir Computing paradigms, where the

recurrent component implementing the dynamic neural memory is randomized and untrained.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 24 - August, 2021

The two “Dependable AI” dimensions that are explored here, and that complement the

cybersecurity perspective from the previous section, are Safety and Privacy. Safety pertains to

the containment of the risks associated to harmful consequences of system operation, on itself,

on the environment and the humans involved. Safety considerations in neural networks are

complicated by their inherent black box nature, which makes inspection of their inner workings

not easily accomplishable, especially by humans. Recurrent NNs are, in this sense, even more

complex and difficult to inspect than feedforward models, since their behaviour is defined by

the history of the inputs presented to the network, through their dynamic memory, rather than

from a single current stimulus. As a consequence, an RNN can fail in unpredictable ways.

Therefore, the enforcing of safety properties on systems incorporating RNNs poses two

requirements: (i) the availability of a methodology that can identify the normal operational

regimes of the learning model and (ii) the availability of mechanism controlling when the RNN

operates outside of the normal regimes and that applies the necessary harm prevention

strategies. In order to address the requirement associated to point (i) above, TEACHING will

provide a method to measure the robustness of the RNNs integrated in its AIaaS toolkit with

respect to inputs perturbations, such as those generated by systematic errors in sensors data, by

environmental conditions, or adversarial perturbations, using state-of-the-art methods such as

POPQORN [Ko19]. The information from the robustness measure allows to perform a

plausibility check on the operation of the RNNs in step (ii), resulting in corrective actions by a

fallback system in case of detection of an erratic/untrusted behaviour. Privacy pertains instead

with the preservation of secrecy of sensitive user data. A key requirement for the TEACHING

AI components is, in particular, that of avoiding leaks of private information used for the

purposes of learning models personalization. Again, the implementation of this requirement is

targeted to the specificity of the learning models used in the AIaaS. To this end, TEACHING

provides privacy-aware training mechanisms based on the differentially private SGD

framework [Aba16]. Other cybersecurity features aside of privacy will also be considered in

the context of work package 3 of the TEACHING project.

4.2.6.1 Quantified Requirements

In contrast to traditional applications that are explicitly programmed or defined through human-

understandable rules, machine learning techniques instead enable computers to learn tasks by

using data. The established safety development processes and practices (described by, e.g., ISO

26262 and ISO/PAS 21448) in the automotive industry have been only successfully applied in

traditional model-based system development. However, none of the available safety standards

within the automotive and any other industry have defined processes that explicitly consider

the specifics of machine learning approaches like the requirements on dataset collections, the

definition of performance evaluation metrics, the handling of uncertainty, etc [BMW19]. In

addition, the increased sharing of data and the machine learning approaches themselves

introduce new cybersecurity risks to the overall system.

The ultimate goal in the engineering and development of dependable systems is to maximize

the evidence of a positive risk balance. In the given context, the TEACHING project aims to

provide evidence that the risks introduced by the increasing demand on connectivity and data

sharing and the risks to violate system safety through using machine learning approaches are

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 25 - August, 2021

adequately addressed. To that purpose, structured approaches for the risk-driven development

of machine learning approaches into safety-related applications shall be proposed.

Table 8: Dependability Requirements

ID Title Description means of verification (KPI)

NFR7 Positive

Risk

Balance

Provide evidence that the

TEACHING platform exhibits a

positive risk balance.

- Risk analysis and risk assessment

of the TEACHING platform

design.

- Proposal of risk mitigation

measures or statement of risk

acceptance.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 26 - August, 2021

5 TEACHING Use Cases and Functional Requirements

In this section we introduce the two project use cases filtered through the concepts of the

TEACHING Application and TEACHING CPSoS as they have been defined above. We are

focusing on identifying the 4 modules from Figure 4 and through those to identify the high-

level system functional requirements. To achieve that, we start by presenting the narrative

pertaining to the main scenarios of the project use cases.

5.1 Use case #1: Automotive

The developer wants to implement an application that performs online learning based on human

feedback to feed a vehicle’s Advanced Driver-Assistance System (ADAS) and have it adapt to

the comfort levels of the passengers (Figure 5). The latter is monitored through a set of sensors

and their input is “translated” to metrics that quantify the passengers’ stress levels by a model.

This information is aggregated with situational awareness data (environment and vehicle status)

in another model that delivers an adjustment towards the ADAS that is fit to the passenger’s

preferences.

Figure 5: Automotive CPSoS Application

The application depicts the functional components implementing each of the four core modules:

• Monitoring: Onboard and/or wearable sensors monitor the human state as the vehicle’s

(system) state and the environment (road, weather, etc.) change. The latter two are

monitored by vehicle sensors (e.g., temperature) and/or external services (e.g., traffic or

weather services) and in-vehicle sensors (e.g., accelerometer).

• Quantification: The Human Comfort/Stress model quantifies the sensor signals into a

measurable unit of human comfort or stress. This function is largely based on AI/ML

tools.

• Integration: The output of the quantification step is fed into the control loop of the

system, the DMU, through another model that uniquely maps the passengers

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 27 - August, 2021

comfort/stress levels to a preferred style of driving. This model is the Personalization

component and it operates on a reinforcement learning principle. The Personalization

component essentially selects preset driving styles that the DMU offers.

• Programming: Although not apparent, it is expected that some tools should allow the

deployment of models for the quantification and integration steps, as well as the data

workflows.

5.2 Use case #2: Avionics

The developer wants to develop an application that implements and executes an anomaly

detection DL algorithm so as to detect high stress levels on the hardware on top of which the

software of the Flight Management System (FMS) of an aircraft is executed (Figure 6). The

application must also provide mitigation proposals to the pilot. The application is comprised of

a set of probes that monitor the hardware that runs the FMS. The monitoring data are aggregated

and summarized in a stress levels metric. This metric, along with the onboard sensors are then

processed with the intention to identify anomalies (anomaly detection). Potential anomalous

events are then reported to the pilot, along with mitigation plans. The actuation of these

mitigation plans can alter the state of the plane, as well as the computational effort on the

hardware, in turn affecting the operation of the DL algorithms. In this case, the human enters

the loop in an offline way, providing indications about appropriate actions to be taken by the

DMU.

Figure 6: Avionics CPSoS Application

In a similar fashion as in the previous use case, the functional components are mapped into the

four core modules of the TEACHING Platform.

• Monitoring: Onboard sensors monitor the human reactions (humanistic state) as the

airplane’s FMS (system) state and the environment (weather conditions, etc) change.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 28 - August, 2021

The latter two are monitored by hardware sensors (e.g., cache misses) and onboard

sensors (e.g., gyroscope).

• Quantification: The software behavior on the hardware is monitored and quantified

through the onboard hardware sensors as indicators of the hardware wear. At the same

time, the human reaction to various events and wear levels is interpreted into a

correctness scale. This function is largely based on AI/ML tools.

• Integration: The output of the quantification step is fed into the control loop of the

system, the FMS (DMU), through another model that uniquely maps the onboard

hardware situation to an appropriate pilot action. This model is based on Anomaly

Detection techniques.

• Programming: Similarly, as in UC #1, the programming element is not apparent.

However, it is again expected that some tools should allow the deployment of models

for the quantification and integration steps, as well as the data workflows.

5.3 Functional requirements

The discussion above indicates a link between the four conceptual modules of the TEACHING

Platform and a number of functional requirements. Summarizing those requirements for the two

use cases we resort to a list presented in Table 9. The Table also refers to the method to assess

the successful implementation of each of the requirements in a similar fashion as with the non-

functional requirements (ref Section 4.2).

Table 9: Summary of functional requirements

Module ID Title Description

means of

verification

(KPI)

Integration
FR1 Integration integrate with the DMU and interact with

it

Testing

Monitoring

FR2 Sensing communicate with the wearable sensors Testing

FR3 External_services communicate to external components and

services through the web

Testing

Programming
FR4 App_Deployment support a runtime for the deployment of

software components

Testing

Quantification
FR5 Model_train support ML/AI algorithms’ training Testing

FR6 Model_run support ML/AI algorithms’ inference Testing

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 29 - August, 2021

6 Design-level decisions

Summarizing the above, the TEACHING Platform is a computing platform and a software

toolkit that must implement a defined set of functional and non-functional requirements.

Design decisions need to be taken based on these. For the reader’s convenience the

requirements are summarized in Table 10.

Table 10: Summary of TEACHING Platform Requirements

ID Title Description

NFR1
Functional Safety

Assessment

Evaluate the status of the activities/work products related to the different

parts of the ISO 26262 safety-lifecycle and their availability, with respect

to the maturity of the project foreseen by the Safety Plan and Project Plan

in order to achieve the safety compliance

NFR2
SOTIF

Assessment

Evaluate the status of the activities/work products related to the different

parts of the ISO 21448 safety-lifecycle and their availability, with respect

to the maturity of the project foreseen by the plan for SOTIF activities

and Project Plan in order to achieve the safety compliance

NFR3
Acceptance

levels

Quantify the subjective ratings of overall satisfaction with the driving

simulator experience and determine the increase of user acceptance level.

NFR4 Real-Time
Guarantee hard real-time scheduling policy and deadlines of periodic and

aperiodic tasks.

NFR5
Energy

Efficiency

Determine the energy efficiency in terms of measurable parameters and

compare available parameters to benchmark alternatives or earlier

versions.

NFR6
Security:

Integrity

Data streams are monitored with an anomaly detection module to detect

rare or abnormal events and unexpected patterns. The model used is a

Long Short-Term Memory Autoencoder evaluated on labelled

benchmark datasets.

NFR7
Positive Risk

Balance

Provide evidence that the TEACHING platform exhibits a positive risk

balance.

FR1 Integration integrate with the DMU and interact with it

FR2 Sensing communicate with the wearable sensors

FR3
External_

services
communicate to external components and services through the web

FR4 App_Deployment support a runtime for the deployment of software components

FR5 Model_ train support ML/AI algorithms’ training

FR6 Model_run support ML/AI algorithms’ inference

In what follows we further elaborate on these design decisions on a per functional requirement

basis, starting with the baseline technology selection that we have made before providing the

generic TEACHING Platform architecture.

6.1 Established technologies

To reduce the risk of failing to meet those requirements, we build upon a slightly revised list of

established technologies, already identified in project report D1.1: “Report on TEACHING

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 30 - August, 2021

related technologies SoA and derived CPSoS requirements”. This selection is reflected on Table

11 with the addition of a column linking to the relevant requirements, i.e, to the requirements

that are meant to be satisfied by the TEACHING Platform.

Table 11: Technology selection based on requirements

TEACHING Platform

aspect
Technology selected

Relevant

requirement

Hardware Platform
I&M SDF for the automotive and

iMX8 for the avionics use case

FR1-6,

NFR4,5,7

Sensors for hardware

monitoring
METrICS NFR3,4

Sensors for human

monitoring

Shimmer array, plus emotive and

respeaker sensors, onboard

cameras

FR2

Resource orchestration

and execution

environment

Docker swarm or K3S FR4,6

ML/DL libraries/toolkits TensorFlow/Lite FR5,6

IoT libraries/toolkits
OS-IoT, MQTT broker, Kafka

broker
FR2,3

Security libraries/toolkits
OpenSSL (low level), NIST

lightweight encryption
NFR6

DB libraries/toolkits SQLite FR4

Communication Gigabit Ethernet FR1

6.2 Design decisions

One of the first design decisions was to separate the hardware on top of which the TEACHING

Platform and the applications run with the hardware on top of which the dependable system

runs (Figure 7). This is reflected in the first row of Table 11 and further elaborated in the project

report D1.1. The key idea is to run the 3 basic modules of the TEACHING Platform (ref: Section

3): Programming, Monitoring and Quantification on the TEACHING board and work on a

standard communication method for the Integration.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 31 - August, 2021

Figure 7: High-level view of design decisions: Separation of underlying HW boards and communication

with external services

This approach shifts the burden for meeting the Safety requirements to the dependable system

board which is expected to be compliant to NFR1&2 by default (from the original vendor).

Furthermore, it separates the design concerns regarding real-time performance, security and

dependability (NFR4,6,7) on the TEACHING Platform.

Of course, devices at the edge of the CPSoS are typically embedded devices that have intrinsic

limitations that have to be carefully considered. The consortium selected the SDF from I&M as

the TEACHING Platform board as the one that navigates a good tradeoff between all NFRs and

FRs. In what follows we further explain the rationale behind this decision.

In the case of the chosen platform, the storage is limited by the size of the e.MMC of 32GB.

This means that only a limited amount of data can be downloaded to the board and at the same

time. At the same time, if data is being gathered to be sent to the cloud, attention should be paid

to the length of the record.

Moreover, the i.MX8 Quad Max features 2 Cortex A72 and 4 Cortex A53 in a big.LITTLE

configuration. The manufacturer reports some performances based on the Coremark

benchmark, which evaluates the performances of the CPU. The reported value is 13933.78

iteration/sec while performing the benchmark on 4 cores out of 6. To have the overall

performance, the Coremark has been executed on the SDF using 6 cores: the result is 26038.58

iteration/sec. Another limitation is given by the main memory: on the platform, there are 6GB

of LPDDR4 RAM running at 1.6GHz. It has to be managed carefully to avoid swaps from/to

the storage that would decrease the performance and introduce unpredictable delays.

The i.MX8 Quad Max features two GC7000XSVX GPUs from Verisilicon. Unfortunately, they

do not support the well-known CUDA language used by Nvidia GPUs, but they still support

OpenCL and other graphic libraries like OpenGLES, OpenVX, and others. Moreover, NXP

provides the abstraction layer needed to run TensorFlow Lite on the GPU.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 32 - August, 2021

Because of the resource-constrained nature of the edge platform, some design choices are

limited. For instance, more lightweight solutions have to be chosen if available, and for HW-

dependent software, it is necessary to check the present support. Both reasons lead to the choice

of Tensorflow Lite as a machine learning framework, being both lightweight and natively

supported. Moreover, every solution has to be tested on the target board to understand the

impact on resource usage.

6.3 Design decision per functional requirement (FR)

6.3.1 FR1: Integration with the DMU

In terms of Integration between the TEACHING Platform board and the dependable system

board, the decision is to use a standard Gigabit Ethernet protocol which is natively supported

by the selected boards. Another reason for this decision was to tackle interoperability, i.e., the

fact that more mainstream technologies are preferred over specialized.

This latter point is placed quite centrally in the TEACHING design decision making. In order

to allow the TEACHING platform to operate on multiple application domains and for multiple

scenarios, the platform board must be based on mainstream technologies so as to maintain some

generic properties.

Apart from the means for the integration between the two boards, there is also the crucial point

of the logical integration. What API does the dependable system board offer that the

TEACHING Platform could use so as to logically integrate with its operation?

This is an open-ended question, in the sense that there is no restriction in the implementation

of the DMU and the possible interfaces (if they exist) commonly differ from one application

domain to another. As such, the design decision is to allow the TEACHING Application

developers to implement this part on their own. The recommendation that TEACHING makes

based on a preliminary dependability analysis reported in D3.2: “Interim Report on Engineering

Methods and Architecture Patterns of Dependable CPSoS”, is to pursue the implementation of

mechanisms that would allow the selection of preset operations in the dependable system.

6.3.2 FR2: Sensing

Already in project report D1.1, we had identified six kinds of sensor information which can be

useful for the TEACHING human monitoring purposes and for feeding the AI components

responsible for human PEC state estimation:

• Inertial data

• Cardiac and respiratory data

• Myographic data

• Electrodermal activity

• Brain activity

• Sound from the passengers.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 33 - August, 2021

Following up the definition of the physical and physiological parameters to be monitored, we

have identified a list of sensing devices enabling their collection. The selection of the specific

devices has been driven by the following considerations:

• Maturity of the technology as assessed in terms of available software and technical

support, as well as in terms of market readiness.

• Compatibility with existing communication technologies, operating systems, and

software.

• Ease of configuration and personalization.

• Ease of integration of different devices with same/similar communication and

synchronization protocols.

• Accessibility of raw sensor data with none/minimal pre-processing to allow full

exploitation of sensed information from the data-driven AI models responsible for PEC

estimation.

• Preferably devices that have already been validated for use in biomedical-oriented

research applications.

In light of NFR3 (Acceptance), the usability of this array of wearable sensors is questionable,

however they are the most appropriate to for modelling PEC. More suitable sensors in terms of

acceptance are considered to be glasses for eye gazing tracking and on board time-of-flight

(TOF), thermal and RGB cameras. The project will attempt to create models for the second type

of sensors (cameras) employing transfer learning techniques from the first type (wearables).

A standard interface for the sensors to feed in the TEACHING Applications is required. As

such, we designed an API for the Sensors based on a pub/sub pattern and the MQTT protocol

for message brokerage (Figure 8).

Figure 8: Sensors API design

This design is further explained in D4.2: “Report on integrated mockup of the AIaaS system”.

but it needs to be revised as it is not suitable for multimedia streaming as is. Support for camera

content streaming can be achieved by simply using the message broker to relay information

about the data stream that opens at the level of the OS.

6.3.3 FR3: Communication with external services

Vehicle-to-everything (V2X) communications represent an important niche in both networking

and vehicular technologies fields. Sattiraju et al. in [Sat] compare link level performance of

Intelligent Transport systems (ITS) -G5 standard, based on IEEE 801.11p, and the more recent

Cellular-V2X (C-V2X), which is based on 3GPP standards. As stated in [Sat], IEEE 802.11p

standard is a well matured technology that has been researched for over 20 years.

MQTT
client

MQTT
client

MQTT

client

PortsSensors Publishers

Message
Broker

t: sensors/heartrate/sns1

t: sensors/heartrate/sns2

t: sensors/gsr/sns1

MQTT
client

Subscribers

t: sensors/heartrate/#

Sensors API

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 34 - August, 2021

Notwithstanding this, the standard never had a deep impact in the automotive mass market,

probably due to the major investment in communication infrastructure to support ITSs. A

comparison with legacy LTE networks was already presented in 2014 in [Mol], while the

Release.12 LTE Device-to-Device (D2D) link level put the comparison of the two standards on

a fairer footing. C-V2X, introduced in Release.14, sheds light on V2X communications, with

the first specification in 3GPP standards and Sattiraju et al. in [Sat] achieve that C-V2X

outperforms IEEE 802.11p for almost all the considered fading channels with a gain ranging

from 0-5 dB, and, above all, at high vehicle speeds. C-V2X extends LTE’s D2D communication

modes by defining two operation modes for vehicular systems: (i) Mode 3 in the coverage and

(ii) Mode 4 out of the coverage of an LTE eNB, which is the radio base station of an LTE

network [Mar].

By now, we generally refer to a Road-Side Unit (RSU) with the generic radio communication

device belonging to the roadside infrastructure, which, in general, can coincide with an eNB in

Mode 3 but not limited to. The equivalent notion in UC#2 is the gate or the hangar where the

airplane parks.

Figure 9: Example of the multiaccess communication and computing infrastructure for the automotive

use case in Teaching

The communication scenario is exampled through the scheme shown in Figure 9 and is fully

described and detailed in D2.2. For convenience, this is reported here to detail the

communication issues linked to such a scenario. It highlights three main entities: i) Vehicular

Node, ii) Road-Side Infrastructure (RSI) Edge service and iii) Cloud service. The mobile node

is equipped with an MQTT broker3 to publish, locally, the data produced by the vehicle’s

sensors. Data is published into a set of topics, such as: private_data, shared_data and

AI_model. Data destined to in-vehicle processing can be published onto the private_data

topic; data that can be shared with other vehicles or edge/cloud services can be published onto

the shared_data topic. Finally, the model topic is devoted to data concerning the AI_model

3 https://mqtt.org

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 35 - August, 2021

shared among the entities of the infrastructure. Data topics are accessed by both local and

remote subscribers.

The computing architecture designed in TEACHING assumes that edge servers are co-located

in the RSI with the RSUs. The entities of the RSI resulting from such a combination provide to

Vehicular Nodes both network access and computing capabilities. A topic replicator is installed

in the RSI, which allows replicating broker’s managed data (i.e., topics) over a set of federated

brokers (the Kafka brokers4 in Figure 9), allowing to increase the resilience of the RSI toward

the possible faults of the deployed brokers.

Vehicular Nodes, moving on a vast geographical area, where such a communication

infrastructure is deployed, will be always able to interact with the redundant brokers through

the RSUs.

The Cloud Service is the most remote computing entity of the proposed infrastructure, from the

perspective of the vehicular node, i,e., the data producer. This entity is devoted to achieving the

federation of the AI models trained on the Edge. Generally speaking, the Cloud is not

necessarily to be identified with public cloud services (e.g., AWS, Google Cloud, etc.), but can

be associated with a private Cloud (e.g., a datacenter provided by automotive vendors).

The algorithm that runs on Cloud performs the federation of the AI models trained on the Edge.

6.3.3.1 Intermittent communication scenarios

The use case presented in Figure 9 can be characterized into two communication scenarios in

Figure 10 and Figure 11, which focus on the issue of intermittent connectivity. Figure 10 applies

when the adjacent cells, i.e. the coverage area of an RSU, of two different RSUs overlap.

Conversely, Figure 11 does apply when the aforementioned cells do not overlap.

4 https://kafka.apache.org

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 36 - August, 2021

Figure 10: Overlapped scenario

Let’s assume that vehicles move along the trajectory with constant velocity 𝑣, and that the linear

density of vehicles per meter of the trajectory is 𝛿. In this mobility scenario, we also assume

that the coverage range of the cell is 𝑅 and the height difference of the antennas between the

vehicle and the cell is Δh. The cells can overlap each other and the minimum distance between

antenna and end-user is 𝐹𝐶. The time required for the handover is THO.

For the scenario in Figure 10 the transmitting time interval 𝑇𝑂𝑁 is given by the length 𝐷𝐴

divided by the average vehicle speed 𝑣. Note that, at the time 𝑇𝑂𝑁, we need to subtract the THO

(handover time between the previous cell and the current one) and, in the case of the first

encountered cell, also the time TCON, which is required by a broker to establish a client-broker

connection at application layer, after that the radio link is fully recovered (i.e. after THO

seconds). When the mobile user is within the handover zone the interval time without

transmitting data (𝑇𝑂𝐹𝐹) is given by:

𝑇𝑂𝐹𝐹 = Min {𝑇HO, 𝐸𝐷/𝑣}.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 37 - August, 2021

Figure 11: Non-overlapped scenario

Regarding the scenario in Figure 11, 𝑇𝑂𝑁 is given by the length 𝐸′𝐴′ divided by the speed 𝑣.

Note that, we need to subtract the time TCON at the time 𝑇𝑂𝑁, again. In this scenario the

disconnected time is given by,

𝑇𝑂𝐹𝐹 = 𝐹′𝐸′/𝑣.

AA′, EE′, and FF′ are the space interval required to cover the radio distance R. During these

small intervals, depending on the communication direction (uplink or downlink) the vehicle

could exit the coverage area (not receiving data coming from the RSU) or could have to wait to

start the connection with the cell.

6.3.4 FR4: Application deployment

The key design decision for implementing this requirement is the use of containers that can host

application images. To further accommodate load balancing and fault tolerance requirements,

we resorted to orchestrators. Some initial experimentation with K3S in various platforms

(Jetson Nano, Raspberry Pi) yielded mixed results in terms of its suitability. On occasions, the

orchestrator consumed more than 80% of the platforms CPU without any application image

being loaded in the container. We resorted to the use of simple docker containers rather than

orchestrators which resulted in better resource utilization, stripped from the benefits that an

orchestrator may bring.

Further experiments were conducted in order to ensure that the containers were able to

communicate with the sensors and that the applications (e.g., application models, ref subsection

6.3.5) can run exploiting the underlying OS capabilities and the infrastructure (e.g., GPUs). An

application model was also developed allowing the developer to use an expressive syntax in a

YAML format so as to program an AI-enabled application to run, creating data workflows and

scheduling the training and inference phases of a variety of algorithms.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 38 - August, 2021

6.3.5 FR5/FR6: Model Training and Inference

This functional requirement is tightly coupled to the Quantification module. The human state

needs to be modelled using the PEC state sensors. For that purpose, we need tools that will

simplify the development for the application developer and that will efficiently use the

underlying infrastructure (e.g. GPUs), given also its limitations in the form of NFRs. This has

taken shape in the form of a service that is offered to the application developer for the creation

and training of AI models, dubbed “AIaaS” (Figure 12).

Figure 12: AIaaS SW Architecture Diagram, current design (source: D4.2: “Report on integrated mockup

of the AIaaS system”)

The AIaaS component is explained and presented in detail in D4.2: “Report on integrated

mockup of the AIaaS system”. The same report, among others, provides the following rationale

for the design choices for this component:

The TEACHING approach to AIaaS on Edge and Cloud devices relies on designing reusable,

portable AI application as a combination of composable, generic app-building blocks called

Learning Modules (LM) and data sources. The rationale of the approach is that:

• The LM building blocks can be separately ported to and optimized for different device

HW/SW architectures, increasing their efficiency with respect to common metrics

(performance, power consumption), allowing careful debugging and verification, as

well as allowing to exploit specific features of the execution platform within the LM.

• AI applications are more easily developed, reducing their overall complexity, increasing

their reliability, and shortening the time-to-market.

Application

Runtime

Data Ingestion / Brokering

External

Communication

Interface

AI Data Bus

LM_1 LM_2 LM_n

Cloud

Other vehicles

AI Framework

Sensors

API

DMU

Wearable

Vehicle

Cameras

RSUs

Others..

LM Init./runtime parameters

Learning

Module Library

Application

Translator

LM implementations

Local Storage API

Batch

Data

Model

Info

Metadata

Application Logic

Application

Description

Satellite

Direct Network

interaction

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 39 - August, 2021

• AI applications effortlessly become as much portable as the LM supporting SW

architecture is. That is, deploying apps on a plethora of Cloud and Edge devices is

allowed by making the focused effort of adapting the AIaaS support to those devices,

without need of changing the apps and allowing different HW/SW devices to

interoperate in a distributed software platform.

The aim of developing a dedicated support architecture for AIaaS in TEACHING thus requires

choosing a trade-off between LM expressiveness and tailoring the LM to the HW. This is

necessary in order to strike a manageable balance between achieving reusability of AI Apps

across AIaaS implementations and easing the porting of the whole AIaaS architecture to new

devices (this shall remain a mostly straightforward and manageable task except possibly for

HW-specific optimizations). Two main abstract goals were held as reference “lighthouses” in

the process of architecture design:

• Allow adoption in TEACHING (being fit for the use cases): The architecture must be

portable and lightweight to suit the automotive and avionic use cases, allowing to build

generic application with the suite of LM provided, while at the same time allowing to

exploit specific hardware resources thanks to interchangeable implementations of the

same LMs.

• Allow reuse in different contexts: The AIaaS supporting architecture shall be useful as

a tool for porting AIaaS applications in different execution contexts, including the Cloud

and various types of Edge devices (e.g., mobile units as well as fixed edge devices).

Developing a full AI stack and development kit would be out of scope and would not

get any adoption, thus the architecture needs to be designed exploiting existing,

technologically relevant and/or industrial-standard AI frameworks at its core, namely:

o TensorFlow

o TensorFlow Lite

o WindFlow / FastFlow

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 40 - August, 2021

7 TEACHING Platform architecture

One conceptual view of the TEACHING Platform was presented in the project report D1.1:

“Report on TEACHING related technologies SoA and derived CPSoS requirements” (Figure

14). This conceptual architecture is following the rationale of layered architectures, where each

layer offers services to the one above. Instantiations of the conceptual architecture may include

implementations that merge layers, similarly as ISO/OSI and TCP/IP.

The starting point for designing the architecture of the TEACHING Platform is the TEACHING

goal which states “a computing platform and the associated software toolkit supporting the

development and deployment of autonomous, adaptive and dependable CPSoS applications”.

As such, at the top layer we place the CPSoS applications that are meant to be supported by the

computing platform and the software toolkit, i.e. the TEACHING Platform.

Based on our definition of CPSoS applications, i.e. the applications that meet a certain number

of NFRs, we provide a layer whose components are meeting those NFRs. This layer is meant

to provide the specification of the software toolkit.

The underlying layers are forming the TEACHING computing platform. They start with the

layer that is meant to provide all the supporting software tools that will allow the development

of the CPSoS applications and meet the functional requirements.

The layer below is meant to specify the way that the computing platform will deal with

interoperability issues, homogenizing the underlying computing and network infrastructures.

The final layer is dealing with the specification of the infrastructure.

In what follows, we provide a more detailed view of the TEACHING Platform.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 41 - August, 2021

Figure 13: TEACHING platform conceptual architecture

The TEACHING platform is comprised of 5 layers, each of which provides services to the

one above. At the bottom of the stack, we have the infrastructure layer.

Infrastructure Layer: The infrastructure layer is comprised of various heterogeneous

infrastructures, exposed through an embedded system OS and the cloud/edge resources.

TEACHING assumes that access to the resources of those infrastructures is a priori possible.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 42 - August, 2021

On that premise, the first task of TEACHING is to homogenize those resources, something that

is the main functionality of the Infrastructure Abstraction Layer.

Infrastructure Abstraction Layer (IAL): The IAL provides a single, abstraction layer for

execution of applications (code or components). Essentially it homogenizes the underlying

infrastructures providing a single API to deploy, execute and monitor resources and application

components. This layer also caters for implementing I/Os, with the underlying persistence

layers as well as with the supported peripherals, i.e., the target autonomous system (CPS),

external APIs (e.g., web services), but most importantly with the mechanisms that provide the

human feedback.

Execution/Management Environment (EME): The EME exposes a single API that facilitated

the execution and lifecycle management of the application components. It provides the runtime

for that purpose, along with integrated libraries, implemented at a low-abstraction language,

providing services and optimizations at the top layers. Such libraries include ML runtimes such

as those of Tensorflow and PyTorch, or ML optimizations in Python, C++, Java, etc. It also

includes libraries for managing IoT solutions (e.g., OS-IoT) implementing IoT protocols such

as OneM2M. Other libraries include the DB and security libraries ensuring that this kind of

functionality is provided to the layers above.

TEACHING Software Toolkit (SDK): The TEACHING SDK provides the framework to

implement CPSoS applications. It provides APIs to implement applications that can run on the

TEACHING platform making the best use of the CPSoS services. The TEACHING SDK

supports 6 toolkits:

• The AI toolkit is the software library that allows the developer to invoke learning

modules, set up training or inference procedures, etc. The AI toolkit has the appropriate

wirings with the underlying layers to deploy and run the ML components at the

appropriate resources (e.g., GPUs) and facilitates the I/Os and dataset management.

• The HCI toolkit allows the software developer to invoke the services that are relevant

to the human feedback, e.g., filters, buffers and other suchlike tools for retrieving and

managing the human feedback. Furthermore, this toolkit includes design patterns and

guidelines for humancentered design.

• The Security and Privacy toolkit provides readily available security APIs as well as

privacy guidelines. In terms of security, the developers may define a part of their code

or a standalone component that has to run on a secure enclave, or that the

communication between components has to use OpenSSL calls. In terms of privacy, the

developers may identify datasets as containing sensitive data, thus implicitly imposing

constraints in their further use. Furthermore, the privacy toolkit may also include

functional tools like anonymizers.

• The Dependability toolkit provides software that audits the code or application

components against the TEACHING dependability guidelines/procedures. It also

provides engineering patterns implementations that the developers can invoke, for

ensuring the dependable execution of software. For instance, in cases where the

developers invoke online training approaches through the AI toolkit, the dependability

toolkit may allow the code to run in multiple instances implementing a consensus

model.

• The Energy Efficiency toolkit is linking the code or components that the user would

like to run with energy efficiency services provided by the underlying layers. E.g., in

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 43 - August, 2021

order to run an application, the toolkit may employ energy efficient approaches such as

dynamic voltage and frequency scaling (DVFS), power mode management (PMM) or

using unconventional cores such as DSP or GPUs of FPGAs. This can be done

automatically or invoked by the user (e.g., “annotating” a part of the code or a

component).

TEACHING CPSoS Applications: The TEACHING applications may be comprised of

loosely coupled, standalone, independent components (e.g., docker images) that the

TEACHING SDK builds or software that the TEACHING SDK compiles and executes.

7.1 Implementation recommendations

Following the discussion about the design decisions which followed the conceptual

architecture, we resort to a simplified version of the TEACHING Platform architecture (Figure

14). This is focusing on a TEACHING Platform that is comprised of the TEACHING Board

(I&M SDF) and a software kit implementing the functional and non-functional requirements.

Instantiations of the components of this architecture with implementation details are provided

in D2.2 and D4.2 while some design decisions are further elaborated in D3.2.

Figure 14: Summary of TEACHING Platform Architecture

The proposed architecture is a result of the collapsing of the layers mentioned in the previous

section, implemented by the combined capabilities of the TEACHING Board and the suggested

software toolkit. It is not possible to provide the full details of the implementation because it

largely depends on the dependable system characteristics and the application domain. In what

follows we provide recommendations for the creation of the APIs.

AIaaS container (Application Runtime)

The AIaaS container or “Application Runtime”, is the heart of the software toolkit. It runs the

processes for the deployment of AI models for training and inference. The Application Runtime

implements all tasks that are common to support AI models and are common to all TEACHING

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 44 - August, 2021

applications. The Application Runtime component manages the main execution workflow of

an AIaaS application. Its core functions include:

• the instantiation of the underlying AI framework that hosts the learning modules;

• instantiation and execution of the AI models of the application;

• configuration of the AI data bus to correctly route the data stream to the relevant AI

models.

• manage the application logic, triggering and providing data to its function.

This implies several key interoperation features that depend on the assumptions made on a

specific implementation of the AIaaS support.

This flow is orchestrated through the use of the Application Model a YAML-formatted

document that provides values to be set as environmental variables, effectively orchestrating

data flows, ML pipelines and component interactions and synchronizations.

Sensors API

The role of the Sensors API is to wrap the actual sensors that publish their streams to a message

broker in a callable API that can serve data upon request from whichever module asks for the

respective data. In order to implement this, the sensor API maintains a data buffer, which

collects data as they arrive at the message broker. The buffer keeps the latest messages from

each sensor. When a request to read data from the Sensor API is made the API returns the

respective set of latest messages and automatically empties the respective queue in order to

receive new messages from this sensor. This guarantees that the Sensor API provides the latest

readings for a sensor every time it is called.

Every time a new sensor is added to the TEACHING platform an instance of the SensorAPI is

instantiated in order to provide access to the sensor. The constructor (init) also defines the size

of the buffer. The open method creates an instantiation of a connection to the message broker

to the respective topic of each sensor.

The read method returns the content of the buffer and clears the buffer. Figure 8 shows the

basic operations scheme of the Sensors API in the AIaaS system. In order to provide room for

scalability, we assume that the drivers needed for each case are available in order for each

sensor to be able to publish on the MQTT bus.

Storage API

The aim of the Local Storage API is to provide the other TEACHING components with stored

versions of the ML and AI models and also allow the long-term storage and reuse of newly

trained models. Apart from models, the Storage API allows to store configurations, temporary

files and caches, to store results and any other custom binary object.

For this purpose, the Local Storage API maintains an SQLite (SQLiteStorage class) for storing

the various objects (instances of an Item class), which have an id, a name and description, a

storage type, a timestamp and the filename where the actual object is stored. The API provides

methods for adding items to the storage, retrieving them from the storage, getting their metadata

by id or name and also for removing items from the storage. Finally, it has methods that allow

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 45 - August, 2021

to store the item to the disk or retrieve it from the disk, but this functionality has not been used

in the current mockup.

External Services API

The proposed architecture is based on two principal technologies: MQTT5 and Apache Kafka6.

In our architecture, KAFKA components run partly on the mobile node and partly on the far

edge. The Client component is used to develop the part of code that runs on the mobile node

(Far Edge) and allows its connection with the infrastructure of KAFKA brokers; such brokers

are implemented in the Near EDGE infrastructure. Precisely, a Consumer module has been

developed to read the data published on the MQTT broker from the various sensor networks

used onboard the mobile node or worn by the user. The Consumer, therefore, behaves as a

subscriber of MQTT topics. Consistently exploiting the Client component, a Producer

component has been developed to publish the messages of the MQTT topics on the KAFKA

topics. Here the topics have only one partition that acts as a leader and is replicated a

predetermined number of times on many brokers. These replications are the followers to give

redundancy to the information. The Consumer module also reads the aggregated/federated

model coming from the Cloud or the Near EDGE, or even from the Far Edge on behalf of the

AI module, while the Producer module can publish this model in an MQTT topic if it is

necessary to have it read by devices on board the vehicle that communicates through MQTT.

Interoperability between KAFKA and MQTT is guaranteed through the KAFKA Connect

component that, through the Sink and Source modules, can make KAFKA communicate with

systems that do not speak KAFKA.

The KAFKA’s component configuration is maintained on the Zookeeper platform located on

the Near infrastructure or in the EDGE Cloud. Precisely in Zookeeper are maintained:

• The information is used by the KAFKA Controller, which is responsible for maintaining

leader-follower relationships across all partitions. If a node for some reason goes down,

it is the responsibility of the controller to tell all replicas to act as partition leaders in

order to fulfil the duties of partition leaders on the node that is about to fail.

• Information about KAFKA brokers needed to elect a new Controller if the current one

goes down. In Zookeeper it is maintained all information about active topics on KAFKA

brokers, the number of partitions for each topic, the position of all replicas, the list of

configuration overrides for all topics and which node is the favourite leader.

• The list of all brokers that are running at a given time and are part of the cluster.

• Access control lists (ACL) of all active topics on the brokers.

Note that the best practice is to exploit the redundancy of the configuration information

provided by the Zookeeper repositories to avoid that the fault of an entity implies the fault of

the whole infrastructure.

To allow the auto-configuration of a new node, the new node has been registered through a

portal and download the configuration file, which contains the IP addresses of at least one

KAFKA server, where the new node can request all the info such as topics, partitions cluster.

5 MQTT: https://mqtt.org

6 Kafka: https://kafka.apache.org/

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 46 - August, 2021

The configuration procedure also allows the download of the certificate that the new node will

use to authenticate itself with the broker. So, the infrastructure needs of a Certification

Authority. KAFKA uses for its client-broker communication the TLS protocol. Once the node

is connected, it receives info on the active brokers and topics, then new node and broker

exchange their certificates. Once acquired, the respective certificates broker and new node

communicate in an encrypted way. Note that the KAFKA ACLs, in our case, is used in such a

way to avoid that each node can read the topics where its federated model is saved and cannot

go to read the other ones.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 47 - August, 2021

8 Conclusions

WP1 is meant to provide technical strategy and oversight for all research and development

activities throughout the lifecycle of the project. It also includes requirements collection and

analysis, state of the art review, and architecture specification production. The activities within

this work package strongly interact with those in the technical WPs providing specifications for

the tools and software developed therein and taking care of their smooth integration. The

specific objectives of this WP for M13-M20 were to:

• Define the TEACHING Platform architecture to feed it in the technical work packages

• Coordinate the efforts for creating an integrated, proof-of-concept platform

This report provides an overview of work conducted mainly in Task 1.2 and 1.3 during this

period time towards the implementation of the first objective. The main outcomes presented

here are the:

• Conceptual design of the TEACHING Platform based on the humanistic intelligence

concept which revolves around four modules:

o Monitoring of the state of the extended system that includes humans

o Quantification of the human state

o Integration with the dependable system (DMU)

o Programming for the creation of new TEACHNG Applications

• Non-functional and functional requirements analysis and definition of means of

verification for each of them

• Key design decisions for the TEACHING Platform architecture

• Implementation recommendations for the TEACHING Platform

The remaining work involves the monitoring of the integration and implementation instances

so as to evaluate NFRs against the defined KPIs and revise architecture as needed.

TEACHING D1.2 ICT-01-2019/№ 871385

TEACHING - 48 - August, 2021

9 References

[Kir08] R. Kirner and P. Puschner, “Obstacles in worst-case execution time analysis,” in 2008 11th IEEE

International Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC), 2008, pp. 333–339.

[Mez11] E. Mezzetti and T. Vardanega, On the industrial fitness of WCET analysis. na, 2011.

[Bin14] J. Bin, S. Girbal, D. Gracia Pérez, A. Grasset, and A. Mérigot, “Studying co-running avionic real-time

applications on multi-core COTS architectures,” Toulouse, France, Feb. 2014, Accessed: Dec. 17, 2020.

[Online]. Available: https://hal.archives-ouvertes.fr/hal-02271379.

[Now12] J. Nowotsch and M. Paulitsch, “Leveraging Multi-core Computing Architectures in Avionics,” in 2012

Ninth European Dependable Computing Conference, May 2012, pp. 132–143, doi:

10.1109/EDCC.2012.27.

[Wil08] R. Wilhelm et al., “The worst-case execution-time problem-overview of methods and survey of tools,”

ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, p. 36:1–36:53, May 2008, doi:

10.1145/1347375.1347389.

[Hec05] R. Heckmann and C. Ferdinand, “Verifying safety-critical timing and memory-usage properties of

embedded software by abstract interpretation,” in Design, Automation and Test in Europe, Mar. 2005,

pp. 618-619 Vol. 1, doi: 10.1109/DATE.2005.326.

[Sat] R.Sattiraju, D.Wang, A.Weinand, and H.D.Schotten,“Link level performance comparison of c-v2x and

its-g5 for vehicular channel models,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-

Spring). IEEE, 2020, pp. 1–7.

[Mol] A.Moller, J.Nuckelt, D.M.Rose, and T.Kurner,“Physical layer performance comparison of lte and ieee

802.11p for vehicular communication in an urban nlos scenario,” in 2014 IEEE 80th Vehicular

Technology Conference (VTC2014-Fall). IEEE, 2014, pp. 1–5.

[Mar] V. Marojevic, “C-v2x security requirements and procedures: Survey and research directions,” arXiv

preprint arXiv:1807.09338, 2018.

[Ko19] C.-Y. Ko, Z. Lyu, L. Weng, L. Daniel, N. Wong, and D. Lin, “Popqorn:Quantifying robustness of

recurrent neural networks,” inInternationalConference on Machine Learning. PMLR, 2019, pp.

3468–347

[Aba16] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li

Zhang, Deep Learning with Differential Privacy, Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, October 2016

[Dimi20] Dimitrakopoulos, G., Uden, L., Varlamis, I.: The future of intelligent transport systems. Elsevier,

Amsterdam (2020)

[Mol18] Molnar, L.J., Ryan, L.H., Pradhan, A.K., Eby, D.W., St. Louis, R.M., Zakrajsek, J.S.: Understanding

trust and acceptance of automated vehicles: An exploratory simulator study of transfer of control

between automated and manual driving. Transportation Research Part F: Traffic Psychology and

Behaviour 58, 319–328 (2018).

[Cle21] P. Clement, H. Danzinger, O. Veledar, C. Koenczoel, G. Macher and A. Eichberger, “Measuring trust

in automated driving using a multi-level approach to human factors,” in In Print (Euromicro DSD/SEAA

Conference 2021), Palermo, 2021.

[Mal17] Malhotra, P., TV, V., Vig, L., Agarwal, P., & Shroff, G. (2017). TimeNet: Pre-trained deep recurrent

neural network for time series classification. arXiv preprint arXiv:1706.08838.

[Pang20] Pang, G., Hengel, A. V. D., Shen, C., & Cao, L. (2020). Deep reinforcement learning for unknown

anomaly detection. arXiv preprint arXiv:2009.06847.

https://hal.archives-ouvertes.fr/hal-02271379

